
Roboception GmbH | January 2026

rc_visard NG 3D Stereo Sensor
ASSEMBLY AND OPERATING MANUAL

Revisions

This product may be modified without notice, when necessary, due to product improvements, modifications, or
changes in specifications. If such modification is made, the manual will also be revised; see revision information.

DOCUMENTATION REVISION 26.01.3 Jan 30, 2026

Applicable to rc_visard NG firmware 26.01.x

MANUFACTURER

Roboception GmbH

Kaflerstrasse 2

81241 Munich

Germany

CUSTOMER SUPPORT: support@roboception.de | +49 89 889 50 79-0 (09:00-17:00 CET)

Please read the operating manual in full and keep it with the product.

COPYRIGHT

This manual and the product it describes are protected by copyright. Unless permitted by German intellectual prop-
erty and related rights legislation, any use and circulation of this content requires the prior consent of Roboception
or the individual owner of the rights. This manual and the product it describes therefore, may not be reproduced in
whole or in part, whether for sale or not, without prior written consent from Roboception.

Information provided in this document is believed to be accurate and reliable. However, Roboception assumes no
responsibility for its use.

Differences may exist between the manual and the product if the product has been modified after the manual’s
edition date. The information contained in this document is subject to change without notice.

Roboception GmbH
Manual: rc_visard_ng

1 Rev: 26.01.3
Status: Jan 30, 2026

mailto:support@roboception.de

Contents

Contents

1 Introduction 5
1.1 Overview . 5
1.2 Warranty . 7
1.3 Applicable standards . 8

1.3.1 Interfaces . 8
1.3.2 Approvals . 8
1.3.3 Standards . 8

1.4 Information on disposal . 9
1.5 Glossary . 10

2 Safety 12
2.1 General warnings . 12
2.2 Intended use . 13

3 Hardware specification 14
3.1 Scope of delivery . 14
3.2 Technical specification . 15
3.3 Environmental and operating conditions . 17
3.4 Power-supply specifications . 17
3.5 Wiring . 18
3.6 Mechanical interface . 20
3.7 Coordinate frames . 21

4 Installation 23
4.1 Software license . 23
4.2 Power up . 23
4.3 Discovery of rc_visard NG devices . 23

4.3.1 Resetting configuration . 24
4.4 Network configuration . 25

4.4.1 Host name . 26
4.4.2 Automatic configuration (factory default) . 26
4.4.3 Manual configuration . 27

5 Measurement principles 28
5.1 Stereo vision . 28
5.2 General information on 3D data . 29

5.2.1 Computing disparity images . 29
5.2.2 Computing depth images and point clouds . 30
5.2.3 Confidence and error images . 30

6 Software modules 32
6.1 Camera module . 32

6.1.1 Rectification . 32
6.1.2 Viewing and downloading images . 32
6.1.3 Parameters, status values and services . 33

6.2 Detection & Measure modules . 42

Roboception GmbH
Manual: rc_visard_ng

2 Rev: 26.01.3
Status: Jan 30, 2026

Contents

6.2.1 Measure . 43
6.2.2 LoadCarrier . 47
6.2.3 TagDetect . 61
6.2.4 ItemPick . 74
6.2.5 BoxPick . 95
6.2.6 SilhouetteMatch . 127
6.2.7 CADMatch . 167

6.3 Configuration modules . 203
6.3.1 Hand-eye calibration . 204
6.3.2 CollisionCheck . 226
6.3.3 Camera calibration . 235
6.3.4 IO and Projector Control . 242

6.4 Database modules . 245
6.4.1 LoadCarrierDB . 245
6.4.2 RoiDB . 253
6.4.3 GripperDB . 260

7 Interfaces 272
7.1 Web GUI . 272

7.1.1 Accessing the Web GUI . 272
7.1.2 Exploring the Web GUI . 273
7.1.3 Web GUI access control . 274
7.1.4 Downloading camera images . 274
7.1.5 Downloading depth images and point clouds . 274

7.2 REST-API interface . 275
7.2.1 General API structure . 275
7.2.2 Available resources and requests . 277
7.2.3 Data type definitions . 310
7.2.4 Swagger UI . 325

7.3 Generic Robot Interface . 329
7.3.1 Job definition . 329
7.3.2 Hand-Eye Calibration . 331
7.3.3 GRI binary protocol specification . 332
7.3.4 Integration with a robot . 339
7.3.5 Job and HEC_config API . 340

7.4 OPC UA interface . 345
7.5 KUKA Ethernet KRL Interface . 345

7.5.1 Ethernet connection configuration . 345
7.5.2 Generic XML structure . 346
7.5.3 Services . 347
7.5.4 Parameters . 351
7.5.5 Example applications . 352
7.5.6 Troubleshooting . 352

7.6 GigE Vision 2.0/GenICam image interface . 352
7.6.1 GigE Vision ports . 353
7.6.2 Important GenICam parameters . 353
7.6.3 Important standard GenICam features . 353
7.6.4 Custom GenICam features of the rc_visard NG 357
7.6.5 Chunk data . 360
7.6.6 Provided image streams . 361
7.6.7 Image stream conversions . 361

7.7 gRPC image stream interface . 362
7.7.1 gRPC service definition . 363
7.7.2 Example client . 366

7.8 Time synchronization . 366
7.8.1 NTP . 366
7.8.2 PTP . 367
7.8.3 Setting time manually . 367

Roboception GmbH
Manual: rc_visard_ng

3 Rev: 26.01.3
Status: Jan 30, 2026

Contents

8 UserSpace 368
8.1 Configuration . 368

8.1.1 Configure UserSpace via the Web GUI . 368
8.2 Configure HTTP proxy . 368
8.3 View running applications . 369
8.4 Network access to UserSpace applications . 369
8.5 Interfaces . 369
8.6 Restrictions . 369

9 Maintenance 370
9.1 Lens cleaning . 370
9.2 Camera calibration . 370
9.3 Creating and restoring backups of settings . 370
9.4 Updating the software license . 371
9.5 Downloading log files . 371
9.6 Updating the firmware . 371
9.7 Restoring the previous firmware version . 373
9.8 Rebooting the rc_visard NG . 373

10 Accessories 374
10.1 Connectivity kit . 374
10.2 Wiring . 374

10.2.1 Ethernet connections . 374
10.2.2 Power connections . 375
10.2.3 Power supplies . 375

10.3 Spare parts . 375

11 Troubleshooting 376
11.1 LED colors . 376
11.2 Hardware issues . 376
11.3 Connectivity issues . 377
11.4 Camera-image issues . 377
11.5 Depth/Disparity, error, and confidence image issues . 378
11.6 GigE Vision/GenICam issues . 379

12 Contact 380
12.1 Support . 380
12.2 Downloads . 380
12.3 Address . 380

13 Appendix 381
13.1 Pose formats . 381

13.1.1 Rotation matrix and translation vector . 382
13.1.2 ABB pose format . 382
13.1.3 FANUC XYZ-WPR format . 382
13.1.4 Franka Emika Pose Format . 383
13.1.5 Fruitcore HORST pose format . 385
13.1.6 Kawasaki XYZ-OAT format . 385
13.1.7 KUKA XYZ-ABC format . 386
13.1.8 Mitsubishi XYZ-ABC format . 387
13.1.9 Universal Robots pose format . 387
13.1.10 Yaskawa Pose Format . 388

HTTP Routing Table 390

Index 392

Roboception GmbH
Manual: rc_visard_ng

4 Rev: 26.01.3
Status: Jan 30, 2026

1 Introduction

Indications in the manual

To prevent damage to the equipment and ensure the user’s safety, this manual indicates each precaution
related to safety with Warning. Supplementary information is provided as a Note.

Warning: Warnings in this manual indicate procedures and actions that must be observed to
avoid danger of injury to the operator/user, or damage to the equipment. Software-related warnings
indicate procedures that must be observed to avoid malfunctions or unexpected behavior of the
software.

Note: Notes are used in this manual to indicate supplementary relevant information.

1.1 Overview

The 3D sensor rc_visard NG is an IP54-protected stereo-camera with on-board computing capabilities.

The rc_visard NG provides real-time camera images and depth images, which can be used to compute
3D point clouds. Additionally, it provides confidence and error images as quality measures for each
image acquisition. It offers an intuitive web UI (user interface) and standardized interfaces, making it
compatible with all major image processing libraries.

With optionally available software modules the rc_visard NG provides out-of-the-box solutions for object
detection and robotic pick-and-place applications.

The rc_visard NG’s intuitive calibration, configuration, and use enable 3D vision for everyone.

Fig. 1.1: rc_visard NG 160

The terms “sensor” and “rc_visard NG” used throughout the manual all refer to the Roboception
rc_visard NG.

Roboception GmbH
Manual: rc_visard_ng

5 Rev: 26.01.3
Status: Jan 30, 2026

1.1. Overview

Note: This manual uses the metric system and mostly uses the units meter and millimeter. Unless
otherwise specified, all dimensions in technical drawings are in millimeters.

Roboception GmbH
Manual: rc_visard_ng

6 Rev: 26.01.3
Status: Jan 30, 2026

1.2. Warranty

1.2 Warranty

Any changes or modifications to the hard- and software not expressly approved by Roboception could
void the user’s warranty and guarantee rights.

Warning: The rc_visard NG utilizes complex hardware and software technology that may behave in
a way not intended by the user. The purchaser must design its application to ensure that any failure
or the rc_visard NG does not cause personal injury, property damage, or other losses.

Warning: Do not attempt to take apart, open, service, or modify the rc_visard NG. Doing so could
present the risk of electric shock or other hazard. Any evidence of any attempt to open and/or modify
the device, including any peeling, puncturing, or removal of any of the labels, will void the Limited
Warranty.

Warning: CAUTION: to comply with the European CE requirement, all cables used to connect this
device must be shielded and grounded. Operation with incorrect cables may result in interference
with other devices or undesired effects of the product.

Note: This product may not be treated as household waste. By ensuring this product is disposed of
correctly, you will help to protect the environment. For more detailed information about the recycling
of this product, please contact your local authority, your household waste disposal service provider,
or the product’s supplier.

Roboception GmbH
Manual: rc_visard_ng

7 Rev: 26.01.3
Status: Jan 30, 2026

1.3. Applicable standards

1.3 Applicable standards

1.3.1 Interfaces

The rc_visard NG supports the following interface standards:

The Generic Interface for Cameras standard is the basis for plug & play handling of cameras and
devices.

GigE Vision® is an interface standard for transmitting high-speed video and related control data over
Ethernet networks.

1.3.2 Approvals

The rc_visard NG has received the following approvals:

EC Declaration of Conformity

1.3.3 Standards

The rc_visard NG has been tested to be in compliance with the following standards:

• EN 55032:2015/A11:2020

• EN 55035:2017

• EN 61000-3-2:2014 / IEC 61000-3-2:2018

• EN 61000-3-3:2013 / IEC 61000-3-3:2013+AMD1:2017

• EN IEC 61000-6-1:2019 / IEC 61000-6-1:2016

• EN 61000-6-2:2005/AC:2005 / IEC 61000-6-2:2016

• EN IEC 61000-6-3:2021 / IEC 61000-6-3:2020

• EN 61000-6-4:2007/A1:2011 / IEC 61000-6-4:2018

• compliant with FCC 47 CFR Part 15B and ICES-003:2021 and 2020

• EN IEC 63000:2018 / IEC 63000:2016

• IP54 according to DIN EN 60529: 2014-09+AMD1:2017-02+AMD2:2019-06

Roboception GmbH
Manual: rc_visard_ng

8 Rev: 26.01.3
Status: Jan 30, 2026

http://www.genicam.org/
http://www.gigevision.com

1.4. Information on disposal

1.4 Information on disposal

1. Disposal of Waste Electrical & Electronic Equipment

This symbol on the product(s) and / or accompanying documents means that used electrical and
electronic products should not be mixed with general household waste. For proper treatment,
recovery and recycling, please contact your supplier or the manufacturer. Disposing of this product
correctly will help save valuable resources and prevent any potential negative effects on human
health and the environment, which could otherwise arise from inappropriate waste handling.

2. Removal of batteries

If the products contain batteries and accumulators that can be removed from the product without
destruction, these must be removed before disposal and disposed of separately as batteries.

The following batteries or accumulators are contained in the rc_visard: None

3. Options for returning old equipment

Owners of old devices can return them to the manufacturer to ensure proper disposal.

Please contact support (Section 12) about returning the device for disposal.

4. Data protection

End users of Electrical & Electronic Equipment are responsible for deleting personal data on the
waste equipment to be disposed of.

5. WEEE registration number

Roboception is registered under the registration number DE 33323989 at the stiftung elektro-
altgeräte register, Nordostpark 72, 90411 Nuremberg, Germany, as a producer of electrical and/or
electronic equipment.

6. Collection and recovery quotas

According to the WEEE Directive, EU member states are obliged to collect data on waste elec-
trical and electronic equipment and to transmit this data to the European Commission. Further
information can be found on the German Ministry for the Environment website.

Information on Disposal outside the European Union

This symbol is valid only in the European Union. If you wish to discard this product please contact your
local authorities or dealer and ask for the correct method of disposal.

Roboception GmbH
Manual: rc_visard_ng

9 Rev: 26.01.3
Status: Jan 30, 2026

1.5. Glossary

1.5 Glossary

DHCP The Dynamic Host Configuration Protocol (DHCP) is used to automatically assign an IP ad-
dress to a network device. Some DHCP servers only accept known devices. In this case, an
administrator needs to configure the DHCP server with the fixed MAC address of a device.

DNS

mDNS The Domain Name Server (DNS) manages the host names and IP addresses of all network
devices. It is responsible for resolving the host name into the IP address for communication with
a device. A DNS can be configured to get this information automatically when a device appears
on a network or manually by an administrator. In contrast, multicast DNS (mDNS) works without
a central server by querying all devices on a local network each time a host name needs to be
resolved. mDNS is available by default on Linux and Mac operating systems and is used when
‘.local’ is appended to a host name.

DOF The Degrees Of Freedom (DOF) are the number of independent parameters for translation and
rotation. In 3D space, 6 DOF (i.e. three for translation and three rotation) are sufficient to describe
an arbitrary position and orientation.

GenICam GenICam is a generic standard interface for cameras. It serves as a unified interface around
other standards such as GigE Vision, Camera Link, USB, etc. See http://genicam.org for more
information.

GigE Gigabit Ethernet (GigE) is a networking technology for transmitting data at one gigabit per second.

GigE Vision GigE Vision® is a standard for configuring cameras and transmitting images over a GigE
network link. See http://gigevision.com for more information.

IP

IP address The Internet Protocol (IP) is a standard for sending data between devices in a computer
network. Every device requires an IP address, which must be unique in the network. The IP
address can be configured by DHCP, Link-Local , or manually.

Link-Local Link-Local is a technology where network devices associate themselves with an IP address
from the 169.254.0.0/16 IP range and check if it is unique in the local network. Link-Local can be
used if DHCP is unavailable and manual IP configuration is not or cannot be done. Link-Local is
especially useful for connecting a network device directly to a host computer. By default, Windows
10 reverts automatically to Link-Local if DHCP is unavailable. Under Linux, Link-Local must be
enabled manually in the network manager.

MAC address The Media Access Control (MAC) address is a unique, persistent address for networking
devices. It is also known as the hardware address of a device. In contrast to the IP address, the
MAC address is (normally) permanently given to a device and does not change.

NTP The Network Time Protocol (NTP) is a TCP/IP protocol for synchronizing time over a network.
Basically a client requests the current time from a server, and uses it to set its own clock.

SDK A Software Development Kit (SDK) is a collection of software development tools or a collection of
software components.

SGM SGM stands for Semi-Global Matching and is a state-of-the-art stereo matching algorithm which
offers short run times and a great accuracy, especially at object borders, fine structures, and in
weakly textured areas.

TCP The Tool Center Point (TCP) is the position of the tool at the end effector of a robot. The position
and orientation of the TCP determines the position and orientation of the tool in 3D space.

URI

URL A Uniform Resource Identifier (URI) is a string of characters identifying resources of the rc_visard
NG’s REST-API. An example of such a URI is /nodes/rc_camera/parameters/fps, which points
to the fps run-time parameter of the stereo camera module.

Roboception GmbH
Manual: rc_visard_ng

10 Rev: 26.01.3
Status: Jan 30, 2026

http://genicam.org
http://gigevision.com

1.5. Glossary

A Uniform Resource Locator (URL) additionally specifies the full network location and protocol,
i.e., an exemplary URL to locate the above resource would be https://<ip>/api/v1/nodes/
rc_camera/parameters/fps where <ip> refers to the rc_visard NG’s IP address.

XYZ+quaternion Format to represent a pose. See Rotation matrix and translation vector (Section
13.1.1) for its definition.

XYZABC Format to represent a pose. See KUKA XYZ-ABC format (Section 13.1.7) for its definition.

Roboception GmbH
Manual: rc_visard_ng

11 Rev: 26.01.3
Status: Jan 30, 2026

2 Safety

Warning: The operator must have read and understood all of the instructions in this manual before
handling the rc_visard NG product.

Note: The term “operator” refers to anyone responsible for any of the following tasks performed in
conjunction with rc_visard NG:

• Installation
• Maintenance
• Inspection
• Calibration
• Programming
• Decommissioning

This manual explains the rc_visard NG’s various components and general operations regarding the
product’s whole life-cycle, from installation through operation to decommissioning.

The drawings and photos in this documentation are representative examples; differences may exist
between them and the delivered product.

2.1 General warnings

Note: Any use of the rc_visard NG in noncompliance with these warnings is inappropriate and may
cause injury or damage as well as void the warranty.

Warning:

• The rc_visard NG needs to be properly mounted before use.

• All cable sets need to be secured to the rc_visard NG and the mount.

• Cords must be at most 30 m long.

• An appropriate DC power source must supply power to the rc_visard NG.

• Each rc_visard NG must be connected to a separate power supply.

• The rc_visard NG’s housing must be grounded.

• The rc_visard NG’s and any related equipment’s safety guidelines must always be satisfied.

• The rc_visard NG does not fall under the purview of the machinery, low voltage, or medical
directives.

Roboception GmbH
Manual: rc_visard_ng

12 Rev: 26.01.3
Status: Jan 30, 2026

2.2. Intended use

Risk assessment and final application:

The rc_visard NG may be used on a robot. Robot, rc_visard NG, and any other equipment used in the
final application must be evaluated with a risk assessment. The system integrator’s duty is to ensure
respect for all local safety measures and regulations. Depending on the application, there may be risks
that need additional protection/safety measures.

2.2 Intended use

The rc_visard NG is intended for data acquisition (e.g., images, disparity images) in stationary and mo-
bile robotic applications. The rc_visard NG is intended for installation on a robot, automated machinery,
mobile platform, or stationary equipment. It can also be used for data acquisition in other applications.

Warning: The rc_visard NG is NOT intended for safety critical applications.

The GigE Vision® industry standard used by the rc_visard NG does not support authentication and
encryption. All data from and to the device is transmitted without authentication and encryption and
could be monitored or manipulated by a third party. It is the operator’s responsibility to connect the
rc_visard NG only to a secured internal network.

Warning: The rc_visard NG must be connected to secured internal networks.

The rc_visard NG may be used only within the scope of its technical specification. Any other use of the
product is deemed unintended use. Roboception will not be liable for any damages resulting from any
improper or unintended use.

Warning: Always comply with local and/or national laws, regulations and directives on automation
safety and general machine safety.

Roboception GmbH
Manual: rc_visard_ng

13 Rev: 26.01.3
Status: Jan 30, 2026

3 Hardware specification

Note: The following hardware specifications are provided here as a general reference; differences
with the product may exist.

3.1 Scope of delivery

Standard delivery for an rc_visard NG includes the rc_visard NG sensor and a quickstart guide only.
The full manual is available in digital form and is always installed on the sensor, accessible through the
Web GUI (Section 7.1), and available at https://roboception.com/resources/knowledge-base/.

Note: The following items are not included in the delivery unless otherwise specified:
• Couplings, adapters, mounts
• Power supply unit, cabling, and fuses
• Network cabling

Please refer to Accessories (Section 10) for suggested third-party cable vendors.

A connectivity kit can be purchased for the rc_visard NG. It contains an M12 to RJ45 network cable,
24 V power supply, and a DC plug to M12 power adapter. Please refer to Accessories (Section 10) for
details.

Note: The connectivity kit is intended only for initial setup, not for permanent installation in industrial
environment.

The following picture shows the important parts of the rc_visard NG which are referenced later in the
documentation.

Mounting interface Power
connector

Ethernet
connector

LED

Cooling fins

Left cameraRight camera

Fig. 3.1: Parts description

Roboception GmbH
Manual: rc_visard_ng

14 Rev: 26.01.3
Status: Jan 30, 2026

https://roboception.com/resources/knowledge-base/

3.2. Technical specification

3.2 Technical specification

The technical specifications for the rc_visard NG are given in Table 3.1. The frame rate for computing
the depth image in High resolution (720 x 540 pixel) is significantly higher when increasing the minimum
distance to 1.2 meters.

Table 3.1: Technical specifications for the rc_visard NG
rc_visard NG 160-6

Image resolution 1440 x 1080 pixel, monochrome
Field of view

6 mm lens: Horizontal: 43°, Vertical: 33°

IR Cutoff 650 nm
Depth image (with Minimum

Distance of 0.5 m)
1440 x 1080 pixel (Full) @ 3 Hz
720 x 540 pixel (High) @ 7 Hz
360 x 270 pixel (Medium) @ 25 Hz
240 x 180 pixel (Low) @ 25 Hz

Depth image (with Minimum
Distance of 1.2 m)

1440 x 1080 pixel (Full) @ 3 Hz
720 x 540 pixel (High) @ 16 Hz
360 x 270 pixel (Medium) @ 25 Hz
240 x 180 pixel (Low) @ 25 Hz

Computing unit Orin Nano 8GB
Power supply 18 V to 30 V
Cooling Passive
Baseline 160 mm
Depth range 0.5 m to infinity
Size (W x H x L) 230 mm x 75 mm x 84 mm
Mass 0.965 kg

The resolutions and accuracies at different distances are given in the following table.

Roboception GmbH
Manual: rc_visard_ng

15 Rev: 26.01.3
Status: Jan 30, 2026

3.2. Technical specification

Table 3.2: Resolution and accuracy of the rc_visard NG in millime-
ters with full resolution stereo matching and random dot projection
on non-reflective and non-transparent objects.

distance (mm) rc_visard NG 160-6
lateral resolution (mm)

500
1000
2000
3000

0.3
0.6
1.1
1.7

depth resolution (mm)

500
1000
2000
3000

0.05
0.2
0.9
2.0

Average depth accuracy (mm)

500
1000
2000
3000

0.2
0.9
3.5
7.8

The rc_visard NG can be equipped with on-board software modules for additional features. These
software modules can be ordered from the Roboception and require a license update.

230

75
37
.5

80

160

62.5
21.5

(84)

Fig. 3.2: Overall dimensions of the rc_visard NG 160

CAD models of the rc_visard NG can be downloaded from http://www.roboception.com/download. The
CAD models are provided as-is, with no guarantee of correctness. When a material property of alu-

Roboception GmbH
Manual: rc_visard_ng

16 Rev: 26.01.3
Status: Jan 30, 2026

http://www.roboception.com/download

3.3. Environmental and operating conditions

minum is assigned (density of 2.76 g
cm3), the mass properties of the CAD model are within 5% of the

actual product with respect to weight and center of mass, and within 10% with respect to moment of
inertia.

3.3 Environmental and operating conditions

The rc_visard NG is designed for industrial applications. Always respect the storage, transport, and
operating environmental conditions outlined in Table 3.3.

Table 3.3: Environmental conditions
rc_visard NG

Storage/Transport temperature -25 °C to 70 °C
Operating temperature 0 °C to 50 °C
Relative humidity (non condensing) 20 % to 80 %
Vibration 5 g
Shock 50 g
Protection class IP54
Others

• Free from corrosive liquids or gases
• Free from explosive liquids or gases
• Free from powerful electromagnetic interference

The rc_visard NG is designed for an operating temperature (surrounding environment) of 0 °C to 50
°C and relies on convective (passive) cooling. Unobstructed airflow, especially around the cooling
fins, needs to be ensured during use. The rc_visard NG should only be mounted using the provided
mechanical mounting interface, and all parts of the housing must remain uncovered. A free space of at
least 10 cm extending in all directions from the housing, and sufficient air exchange with the environment
is required to ensure adequate cooling. Cooling fins must be free of dirt and other contamination.

The housing temperature depends on the processing load, sensor orientation, and surrounding envi-
ronmental temperatures. When the sensor’s exposed housing surfaces exceed 60°C, the LED at the
front will turn from green to red.

Warning: For hand-guided applications, a heat-insulated handle should be attached to the sensor
to reduce the risk of burn injuries due to skin exposure to surface temperatures exceeding 60°C.

3.4 Power-supply specifications

The rc_visard NG needs to be supplied by a DC voltage source. The rc_visard NG’s standard package
doesn’t include a DC power supply. The power supply contained in the connectivity kit may be used for
initial setup. For permanent installation, it is the customer’s responsibility to provide suitable DC power.
Each rc_visard NG must be connected to a separate power supply. Connection to domestic grid power
is only allowed through a power supply certified as EN55011 Class B.

Table 3.4: Absolute maximum ratings for power supply
Min Nominal Max

Supply voltage 18.0 V 24 V 30.0 V
Max power consumption 25 W
Overcurrent protection Supply must be fuse-protected to a maximum of 2 A

Roboception GmbH
Manual: rc_visard_ng

17 Rev: 26.01.3
Status: Jan 30, 2026

3.5. Wiring

Warning: Exceeding maximum power rating values may lead to damage of the rc_visard NG, power
supply, and connected equipment.

Warning: A separate power supply must power each rc_visard NG.

Warning: Connection to domestic grid power is allowed through a power supply certified as
EN55011 Class B only.

3.5 Wiring

Cables are not provided with the rc_visard NG standard package. It is the customer’s responsibility to
obtain the proper cabling. Accessories (Section 10) provides an overview of suggested components.

Warning: Proper cable management is mandatory. Cabling must always be secured to the
rc_visard NG mount with a strain-relief clamp so that no forces due to cable movements are ex-
erted on the rc_visard NG’s M12 connectors. Enough slack needs to be provided to allow for full
range of movement of the rc_visard NG without straining the cable. The cable’s minimum bend
radius needs to be observed.

The rc_visard NG provides an industrial 8-pin A-coded M12 socket connector for Ethernet connectivity
and an 8-pin A-coded M12 plug connector for power and GPIO connectivity. Both connectors are located
at the back. The location of both connectors on the rc_visard NG is shown in Fig. 3.3.

45.9

23
.4

23
.4

Ethernet
connector

Power

Fig. 3.3: Locations of the electrical connections for the rc_visard NG, with Ethernet on top and power
on the bottom

Connectors are rotated so that standard 90° angled connectors will exit horizontally, away from the
camera (away from the cooling fins).

Roboception GmbH
Manual: rc_visard_ng

18 Rev: 26.01.3
Status: Jan 30, 2026

3.5. Wiring

1

2

3
45

6

7

8

2
1

3 4

5
6

7 8

Ethernet
M12 8-pin socket connector
X-coded, view onto camera

Power/GPIO
M12 8-pin plug connector
A-coded, view onto camera

Fig. 3.4: Pin positions for power and Ethernet connector

Pin assignments for the Ethernet connector are given in Fig. 3.5.

M12 RJ45

6
4
5
8
1
7
2
3

1 WH-OG
2 OG
3 WH-GN
6 GN
5 WH-BU
4 BU
7 WH-BN
8 BN

Fig. 3.5: Pin assignments for M12 to Ethernet cabling

Pin assignments for the power connector are given in Table 3.5.

Table 3.5: Pin assignments for the power connector
Pin Assignment
1 GPIO In 2
2 Power
3 GPIO In 1
4 GPIO Gnd
5 GPIO Vcc
6 GPIO Out 1 (image expo-

sure)
7 Gnd
8 GPIO Out 2

GPIOs are decoupled by photocoupler. GPIO Out 1 by default provides an exposure sync signal with a
logic high level for the duration of the image exposure. All GPIOs can be controlled via the IOControl
module (IO and Projector Control , Section 6.3.4). Pins of unsused GPIOs should be left floating.

Warning: It is especially important that during the boot phase GPIO In 1 is left floating or remains
low. The rc_visard NG will not boot if the pin is high during boot time.

Roboception GmbH
Manual: rc_visard_ng

19 Rev: 26.01.3
Status: Jan 30, 2026

3.6. Mechanical interface

GPIO circuitry and specifications are shown in Fig. 3.6. The maximum rated voltage for GPIO In and
GPIO Vcc is 30 V.

2k

GPIO In:
 Uin_low = 0 VDC
 Uin_high = 11VDC to 30 VDC
 Iin = 5mA to 13 mA

GPIO Out:
 Uext = 5VDC to 30 VDC
 Iout = max 50 mA

2k

180

180

GPIO_GND

GPIO_In2

GPIO_In1

GPIO_Power_Vcc

GPIO_Out1

GPIO_Out2

Fig. 3.6: GPIO circuitry and specifications – do not connect signals higher than 30 V

Warning: Do not connect signals with voltages higher than 30 V to the rc_visard NG.

3.6 Mechanical interface

The rc_visard NG offers a mounting-point at the bottom.

Roboception GmbH
Manual: rc_visard_ng

20 Rev: 26.01.3
Status: Jan 30, 2026

3.7. Coordinate frames

50

5
5

5
28

4+0.05

4+0.05

28

Z

X

3x M4 mounting threads
for dynamic applications

UNC 1/4“ - 20,
thread depth = 5

Optical axis

3x M4 thread

depth = 6

Fig. 3.7: Mounting-point for connecting the rc_visard NG to robots or other mountings

For troubleshooting and static applications, the sensor may be mounted using the standardized tripod
thread (UNC 1/4”-20) indicated at the coordinate-frame origin. For dynamic applications such as mount-
ing on a robotic arm, the sensor must be mounted with three M4 (metric standard) 8.8 machine screws
tightened to 2.5 Nm and secured with a medium-strength threadlocking adhesive such as Loctite 243.
Maximum thread depth is 6 mm. The two 4 mm diameter holes may be used for positioning pins (ISO
2338 4 m6) to ensure precise repositioning of the sensor.

Warning: For dynamic applications, the rc_visard NG must be mounted with three M4 8.8 machine
screws tightened to 2.5 Nm torque and secured with threadlocking adhesive. Do not use high-
strength bolts. The engaged thread depth must be at least 5 mm.

3.7 Coordinate frames

The rc_visard NG’s coordinate-frame origin is defined as the exit pupil of the left camera lens. This
frame is called sensor coordinate frame or camera coordinate frame. An approximate location for the
rc_visard NG is shown in the next image.

The mounting-point frame for the rc_visard NG is defined to be at the bottom, centered in the tripod
thread, with orientation identical to that of the sensor’s coordinate frame.

Fig. 3.8 shows approximate offsets.

Roboception GmbH
Manual: rc_visard_ng

21 Rev: 26.01.3
Status: Jan 30, 2026

3.7. Coordinate frames

230

160

80

75
37
.5

21.5 28

62.5
(84)

~31.5

x

y

x

y

z

y

z

y

Fig. 3.8: Approximate locations of sensor/camera coordinate frame (inside left lens) and mounting-point
frame (at tripod thread) for the rc_visard NG 160

Note: The correct offset between the sensor/camera frame and a robot coordinate frame can be
calibrated through the hand-eye-calibration procedure (Section 6.3.1).

Roboception GmbH
Manual: rc_visard_ng

22 Rev: 26.01.3
Status: Jan 30, 2026

4 Installation

Warning: The instructions on Safety (Section 2) related to the rc_visard NG must be read and
understood prior to installation.

The rc_visard NG offers a Gigabit Ethernet interface for connecting the device to a computer network.
All communications to and from the device are performed via this interface. The rc_visard NG has an
on-board computing resource that requires booting time after powering up the device.

4.1 Software license

Every rc_visard NG device ships with a pre-installed license file for licensing and protection of the
installed software packages. The license is bound to that specific rc_visard NG device and cannot be
used or transferred to other devices.

The functionality of the rc_visard NG can be enhanced anytime by upgrading the license (Section 9.4),
e.g., for optionally available software modules.

Note: The rc_visard NG requires to be rebooted whenever the installed licenses have changed.

Note: The license status can be retrieved via the rc_visard NG’s various interfaces such as the
System → Firmware & License page of the Web GUI (Section 7.1).

4.2 Power up

Note: Always fully connect and tighten the M12 power connector on the rc_visard NG before turning
on the power supply.

After connecting the rc_visard NG to the power, the LED on the front of the device should immediately
illuminate. During the device’s boot process, the LED will change color and will eventually turn green.
This signals that all processes are up and running.

If the network is not plugged in or the network is not properly configured, then the LED will flash red every
5 seconds. In this case, the device’s network configuration should be verified. See LED colors (Section
11.1) for more information on the LED color codes.

4.3 Discovery of rc_visard NG devices

Roboception rc_visard NG devices that are powered up and connected to the local network or directly
to a computer can be found using the standard GigE Vision® discovery mechanism.

Roboception GmbH
Manual: rc_visard_ng

23 Rev: 26.01.3
Status: Jan 30, 2026

4.3. Discovery of rc_visard NG devices

Roboception offers the open-source tool rcdiscover-gui, which can be downloaded free of charge from
https://github.com/roboception/rcdiscover/releases for Windows and Linux. The tool’s Windows version
consists of a single executable for Windows 7, 10 and 11, which can be executed without installation.
For Linux an installation package is available for Ubuntu.

At startup, all available GigE Vision® devices – including rc_visard NG devices – are listed with their
names, serial numbers, current IP addresses, and unique MAC addresses. The discovery tool finds
all devices reachable by global broadcasts. Misconfigured devices that are located in different subnets
than the application host may also be listed. A tickmark in the discovery tool indicates whether devices
are actually reachable via a web browser.

Fig. 4.1: Label on the rc_visard NG indicating model, serial number and MAC address

Fig. 4.2: rcdiscover-gui tool for finding connected GigE Vision® devices

After successful discovery, a double click on the device row opens the Web GUI (Section 7.1) of the
device in the operating system’s default web browser. Google Chrome or Mozilla Firefox are recom-
mended as web browser.

4.3.1 Resetting configuration

A misconfigured device can be reset by using the Reset rc_visard button in the discovery tool. The
reset mechanism is only available for two minutes after device startup. Thus, the rc_visard NG may
require rebooting before being able to reset the device.

Roboception GmbH
Manual: rc_visard_ng

24 Rev: 26.01.3
Status: Jan 30, 2026

https://github.com/roboception/rcdiscover/releases

4.4. Network configuration

Fig. 4.3: Reset dialog of the rcdiscover-gui tool

If the discovery tool still successfully detects the the misconfigured rc_visard NG, then the latter can
be selected from the rc-visard drop-down menu. Otherwise, the rc_visard NG’s MAC address, which is
printed on the device label, can be entered manually into the designated fields.

One of four options can be chosen after entering the MAC address:

• Reset Parameters: Reset all rc_visard NG parameters, such as frame rate, that are configurable
via Web GUI (Section 7.1).

• Reset Network : Reset network settings and user-defined name.

• Reset All : Reset the rc_visard NG parameters as well as network settings and user-defined name.

• Switch Partitions: Allows a rollback to be performed as described in Restoring the previous
firmware version (Section 9.7).

A white status LED followed by a device reboot indicates a successful reset. If no reaction is noticeable,
the two minutes time slot may have elapsed, requiring another reboot.

Note: The reset mechanism is only available for the first two minutes after startup.

4.4 Network configuration

The rc_visard NG requires an Internet Protocol (IP) address for communication with other network
devices. The IP address must be unique in the local network, and can be set either manually via a
user-configurable persistent IP address, or automatically via DHCP. If none of these IP configuration
methods apply, the rc_visard NG falls back to a Link-Local IP address.

Following the GigE Vision® standard, the priority of IP configuration methods on the rc_visard NG is

1. Persistent IP (if enabled)

2. DHCP (if enabled)

3. Link-Local

Roboception GmbH
Manual: rc_visard_ng

25 Rev: 26.01.3
Status: Jan 30, 2026

4.4. Network configuration

Yes

Yes

Yes
Use Persistent IP

Use DHCP

Successful?

Successful?

No

No
No

Start

End

Yes

No

Persistent IP
enabled?

DHCP enabled?

Use Link-Local
Address

Fig. 4.4: rc_visard NG’s IP configuration method selection flowchart

Options for changing the rc_visard NG’s network settings and IP configuration are:

• the System → Network page of the rc_visard NG’s Web GUI – if it is reachable in the local network
already, see Web GUI (Section 7.1)

• any configuration tool compatible with GigE Vision® 2.0, or Roboception’s command-line tool
gc_config. Typically, these tools scan for all available GigE Vision® devices on the network. All
rc_visard NG devices can be uniquely identified by their serial number and MAC address, which
are both printed on the device.

• temporarily changing or completely resetting the rc_visard NG’s network configuration via Robo-
ception’s rcdiscover-gui tool, see Discovery of rc_visard NG devices (Section 4.3)

Note: The command-line tool gc_config is part of Roboception’s open-source convenience layer
rc_genicam_api, which can be downloaded free of charge for Windows and Linux from http://www.
roboception.com/download.

4.4.1 Host name

The rc_visard NG’s host name is based on its serial number, which is printed on the device, and is
defined as rc-visard-ng-<serial number>.

4.4.2 Automatic configuration (factory default)

The Dynamic Host Configuration Protocol (DHCP) is preferred for setting an IP address. If DHCP is
active on the rc_visard NG, which is the factory default, the device tries to contact a DHCP server at
startup and every time the network cable is being plugged in. If a DHCP server is available on the
network, the IP address is automatically configured.

In some networks, the DHCP server is configured so that it only accepts known devices. In this case,
the Media Access Control address (MAC address), which is printed on the device label, needs to be
configured in the DHCP server. At the same time, the rc_visard NG’s host name can also be set in

Roboception GmbH
Manual: rc_visard_ng

26 Rev: 26.01.3
Status: Jan 30, 2026

http://www.roboception.com/download
http://www.roboception.com/download

4.4. Network configuration

the Domain Name Server (DNS). Both MAC address and host name should be sent to the network
administrator for configuration.

If the rc_visard NG cannot contact a DHCP server within about 15 seconds after startup, or after plug-
ging in the network cable, it assigns itself a unique IP address. This process is called Link-Local . This
option is especially useful for connecting the rc_visard NG directly to a computer. The computer must be
configured for Link-Local as well. Link-Local might already be configured as a standard fallback option,
as it is under Windows 10. Other operating systems such as Linux require Link-Local to be explicitly
configured in their network managers.

4.4.3 Manual configuration

Specifying a persistent, i.e. static IP address manually might be useful in some cases. This address is
stored on the rc_visard NG to be used on device startup or network reconnection. Please make sure
the selected IP address, subnet mask and gateway will not cause any conflicts on the network.

Warning: The IP address must be unique within the local network and within the local network’s
range of valid addresses. Furthermore, the subnet mask must match the local network; otherwise,
the rc_visard NG may become inaccessible. This can be avoided by using automatic configuration
as explained in Automatic configuration (factory default) (Section 4.4.2).

If this IP address cannot be assigned, e.g. because it is already used by another device in the network,
IP configuration will fall back to automatic configuration via DHCP (if enabled) or a Link-Local address.

Roboception GmbH
Manual: rc_visard_ng

27 Rev: 26.01.3
Status: Jan 30, 2026

5 Measurement principles

The rc_visard NG is a self-registering 3D camera. It provides rectified camera, disparity, confidence,
and error images, which enable the viewed scene’s depth values along with their uncertainties to be
computed. Furthermore, the motion of visual features in the images is combined with acceleration and
turn-rate measurements at a high rate, which enables the sensor to provide real-time estimates of its
current pose, velocity, and acceleration.

In the following, the underlying measurement principles are explained in more detail.

5.1 Stereo vision

In stereo vision, 3D information about a scene can be extracted by comparing two images taken from
different viewpoints. The main idea behind using a camera pair for measuring depth is the fact that
object points appear at different positions in the two camera images depending on their distance from
the camera pair. Very distant object points appear at approximately the same position in both images,
whereas very close object points occupy different positions in the left and right camera image. The
object points’ displacement in the two images is called disparity. The larger the disparity, the closer the
object is to the camera. The principle is illustrated in Fig. 5.1.

Image plane

Left camera Right camera

Left image

Right image

d1 d2

Fig. 5.1: Sketch of the stereo-vision principle: The more distant object (black) exhibits a smaller disparity
𝑑2 than that of the close object (gray), 𝑑1.

Stereo vision is a form of passive sensing, meaning that it emits neither light nor other signals to
measure distances, but uses only light that the environment emits or reflects. Thus, the Robocep-
tion products utilizing this sensing principle can work indoors and outdoors and multiple devices can
work together without interferences.

To compute the 3D information, the stereo matching algorithm must be able to find corresponding object
points in the left and right camera images. For this, the algorithm requires texture, meaning changes in

Roboception GmbH
Manual: rc_visard_ng

28 Rev: 26.01.3
Status: Jan 30, 2026

5.2. General information on 3D data

image intensity values due to patterns or the objects’ surface structure, in the images. Stereo matching
is not possible for completely untextured regions, such as a flat white wall without any visible surface
structure. The stereo matching method used by the rc_visard NG is SGM (Semi-Global Matching),
which provides the best trade-off between runtime and accuracy, even for fine structures.

The following software modules are required to compute 3D information:

• Camera module: This module is responsible for capturing synchronized image pairs and trans-
forming them into images approaching those taken by an ideal camera (rectification).

• sect-stereo-matching: This module computes disparities for the rectified stereo image pair using
SGM (Section ??).

For stereo matching, the position and orientation of the left and right cameras relative to each other has
to be known with very high accuracy. This is achieved by calibration. The rc_visard NG’s cameras are
pre-calibrated during production. However, if the rc_visard NG has been decalibrated, during transport
for example, then the user has to recalibrate the stereo camera:

• Camera calibration: This module enables the user to recalibrate the rc_visard NG’s stereo cam-
era (Section 6.3.3).

5.2 General information on 3D data

The following sections describe how disparity images are computed from stereo image pairs and how
disparity, error and confidence images can be used to compute depth data and depth errors.

5.2.1 Computing disparity images

After rectification, an object point is guaranteed to be projected onto the same pixel row in both left and
right image. That point’s pixel column in the right image is always lower than or equal to the same point’s
pixel column in the left image. The term disparity signifies the difference between the pixel columns in
the right and left images and expresses the depth or distance of the object point from the camera. The
disparity image stores the disparity values of all pixels in the left camera image.

The larger the disparity, the closer the object point. A disparity of 0 means that the projections of the
object point are in the same image column and the object point is at infinite distance. Often, there are
pixels for which disparity cannot be determined. This is the case for occlusions that appear on the left
sides of objects, because these areas are not seen from the right camera. Furthermore, disparity cannot
be determined for textureless areas. Pixels for which the disparity cannot be determined are marked as
invalid with the special disparity value of 0. To distinguish between invalid disparity measurements and
disparity measurements of 0 for objects that are infinitely far away, the disparity value for the latter is set
to the smallest possible disparity value above 0.

To compute disparity values, the stereo matching algorithm has to find corresponding object points in
the left and right camera images. These are points that represent the same object point in the scene.
For stereo matching, the rc_visard NG uses SGM (Semi-Global Matching), which offers quick run times
and great accuracy, especially at object borders, fine structures, and in weakly textured areas.

A key requirement for any stereo matching method is the presence of texture in the image, i.e., image-
intensity changes due to patterns or surface structure within the scene. In completely untextured regions
such as a flat white wall without any structure, disparity values can either not be computed or the results
are erroneous or have low confidence (see Confidence and error images, Section 5.2.3). The texture in
the scene should not be an artificial, repetitive pattern, since those structures may lead to ambiguities
and hence to wrong disparity measurements.

When working with poorly textured objects or in untextured environments, a static artificial texture can
be projected onto the scene using an external pattern projector. This pattern should be random-like and
not contain repetitive structures. The rc_visard NG provides the IOControl module (see IO and Projector
Control , Section 6.3.4) as optional software module which can control a pattern projector connected to
the sensor.

Roboception GmbH
Manual: rc_visard_ng

29 Rev: 26.01.3
Status: Jan 30, 2026

5.2. General information on 3D data

5.2.2 Computing depth images and point clouds

The following equations show how to compute an object point’s actual 3D coordinates 𝑃𝑥, 𝑃𝑦, 𝑃𝑧 in the
camera coordinate frame from the disparity image’s pixel coordinates 𝑝𝑥, 𝑝𝑦 and the disparity value 𝑑 in
pixels:

𝑃𝑥 =
𝑝𝑥 · 𝑡
𝑑

𝑃𝑦 =
𝑝𝑦 · 𝑡
𝑑

𝑃𝑧 =
𝑓 · 𝑡
𝑑

,

(5.1)

where 𝑓 is the focal length after rectification in pixels and 𝑡 is the stereo baseline in meters, which
was determined during calibration. These values are also transferred over the GenICam interface (see
Custom GenICam features of the rc_visard NG, Section 7.6.4).

Note: The rc_visard NG’s camera coordinate frame is defined as shown in Coordinate
frames (Section 3.7).

Note: The rc_visard NG reports a focal length factor via its various interfaces. It relates to the image
width for supporting different image resolutions. The focal length 𝑓 in pixels can be easily obtained
by multiplying the focal length factor by the image width in pixels.

Please note that equations (5.1) assume that the coordinate frame is centered in the principal point that
is typically in the center of the image, and 𝑝𝑥, 𝑝𝑦 refer to the middle of the pixel, i.e. by adding 0.5 to the
integer pixel coordinates. The following figure shows the definition of the image coordinate frame.

Fig. 5.2: The image coordinate frame’s origin is defined to be at the image center – 𝑤 is the image width
and ℎ is the image height.

The same equations, but with the corresponding GenICam parameters are given in Image stream con-
versions (Section 7.6.7).

The set of all object points computed from the disparity image gives the point cloud, which can be used
for 3D modeling applications. The disparity image is converted into a depth image by replacing the
disparity value in each pixel with the value of 𝑃𝑧.

Note: Roboception provides software and examples for receiving disparity images from the rc_visard
NG via GigE Vision and computing depth images and point clouds. See http://www.roboception.com/
download.

5.2.3 Confidence and error images

For each disparity image, additionally an error image and a confidence image are provided, which give
uncertainty measures for each disparity value. These images have the same resolution and the same

Roboception GmbH
Manual: rc_visard_ng

30 Rev: 26.01.3
Status: Jan 30, 2026

http://www.roboception.com/download
http://www.roboception.com/download

5.2. General information on 3D data

frame rate as the disparity image. The error image contains the disparity error 𝑑𝑒𝑝𝑠 in pixels corre-
sponding to the disparity value at the same image coordinates in the disparity image. The confidence
image contains the corresponding confidence value 𝑐 between 0 and 1. The confidence is defined as
the probability of the true disparity value being within the interval of three times the error around the
measured disparity 𝑑, i.e., [𝑑 − 3𝑑𝑒𝑝𝑠, 𝑑 + 3𝑑𝑒𝑝𝑠]. Thus, the disparity image with error and confidence
values can be used in applications requiring probabilistic inference. The confidence and error values
corresponding to an invalid disparity measurement will be 0.

The disparity error 𝑑𝑒𝑝𝑠 (in pixels) can be converted to a depth error 𝑧𝑒𝑝𝑠 (in meters) using the focal
length 𝑓 (in pixels), the baseline 𝑡 (in meters), and the disparity value 𝑑 (in pixels) of the same pixel in
the disparity image:

𝑧𝑒𝑝𝑠 =
𝑑𝑒𝑝𝑠 · 𝑓 · 𝑡

𝑑2
. (5.2)

Combining equations (5.1) and (5.2) allows the depth error to be related to the depth:

𝑧𝑒𝑝𝑠 =
𝑑𝑒𝑝𝑠 · 𝑃𝑧

2

𝑓 · 𝑡
.

Roboception GmbH
Manual: rc_visard_ng

31 Rev: 26.01.3
Status: Jan 30, 2026

6 Software modules

The rc_visard NG comes with several software modules, each of which corresponds to a certain func-
tionality and can be interfaced via its respective node in the REST-API interface (Section 7.2) or in the
Generic Robot Interface (Section 7.3).

The rc_visard NG’s software modules can be divided into

• Camera module (Section 6.1) acquires images and performs planar rectification for using the
camera as a measurement device. Images are provided both for further internal processing
by other modules and for external use as GenICam image streams.

• Detection & Measure modules (Section 6.2) which provide a variety of detection functionalities,
such as grasp point computation and object detection,

• Configuration modules (Section 6.3) which enable the user to perform calibrations and config-
ure the rc_visard NG for specific applications.

• Database modules (Section 6.4) which enable the user to configure global data available to all
other modules, such as load carriers, regions of interest and grippers.

6.1 Camera module

The camera module is a base module which is available on every rc_visard NG and is responsible for
image acquisition and rectification. It provides various parameters, e.g. to control exposure and frame
rate.

6.1.1 Rectification

To simplify image processing, the camera module rectifies all camera images based on the camera
calibration. This means that lens distortion is removed and the principal point is located exactly in the
middle of the image.

The model of a rectified camera is described with just one value, which is the focal length. The rc_visard
NG reports a focal length factor via its various interfaces. It relates to the image width for supporting
different image resolutions. The focal length 𝑓 in pixels can be easily obtained by multiplying the focal
length factor by the image width in pixels.

In case of a stereo camera, rectification also aligns images such that an object point is always projected
onto the same image row in both images. The cameras’ optical axes become exactly parallel.

6.1.2 Viewing and downloading images

The rc_visard NG provides the time-stamped rectified images over the GenICam interface (see Provided
image streams, Section 7.6.6) or via the gRPC image stream interface (see Section 7.7).

Live streams of the images are provided with reduced quality in the Web GUI (Section 7.1).

Roboception GmbH
Manual: rc_visard_ng

32 Rev: 26.01.3
Status: Jan 30, 2026

6.1. Camera module

The Web GUI also provides the possibility to download a snapshot of the current scene as a .tar.gz file
as described in Downloading camera images (Section 7.1.4).

6.1.3 Parameters, status values and services

6.1.3.1 Parameters

The camera module is called rc_camera and is represented by the Camera page in the desired pipeline
in the Web GUI (Section 7.1). The user can change the camera parameters there, or directly via the
REST-API (REST-API interface, Section 7.2).

Parameter overview

This module offers the following run-time parameters:

Roboception GmbH
Manual: rc_visard_ng

33 Rev: 26.01.3
Status: Jan 30, 2026

6.1. Camera module

Table 6.1: The rc_camera module’s run-time parameters
Name Type Min Max Default Description
acquisition_mode string - - Continuous Acquisition mode: [Continuous,

Trigger]
exp_auto bool false true true Switching between auto and man-

ual exposure (deprecated, please
use exp_control instead)

exp_auto_average_max float64 0.0 1.0 0.75 Maximum average intensity in Auto
exposure mode

exp_auto_average_min float64 0.0 1.0 0.25 Minimum average intensity in Auto
exposure mode

exp_auto_mode string - - Normal Auto-exposure mode: [Normal,
Out1High, AdaptiveOut1]

exp_control string - - Auto Exposure control mode: [Manual,
Auto, HDR]

exp_height int32 0 1079 0 Height of auto exposure region. 0
for whole image.

exp_max float64 1e-06 0.022999 0.022999 Maximum exposure time in seconds
in Auto exposure mode

exp_offset_x int32 0 1439 0 First column of auto exposure re-
gion

exp_offset_y int32 0 1079 0 First row of auto exposure region
exp_value float64 1e-06 0.022999 0.005 Exposure time in seconds in Manual

exposure mode
exp_width int32 0 1439 0 Width of auto exposure region. 0 for

whole image.
fps float64 1.0 25.0 25.0 Frames per second in Hertz
gain_value float64 0.0 48.0 0.0 Gain value in decibel if not in Auto

exposure mode
gamma float64 0.1 10.0 0.7 Gamma factor
trigger_activation string - - RisingEdge Trigger activation: [RisingEdge,

FallingEdge, AnyEdge]
trigger_source string - - Software Trigger source: [Software, In1, In2]
wb_auto bool false true true Switching white balance on and off

(only for color camera)
wb_ratio_blue float64 1.0 1.0 1.0 Blue to green balance ratio if

wb_auto is false (only for color cam-
era)

wb_ratio_red float64 1.0 1.0 1.0 Red to green balance ratio if
wb_auto is false (only for color cam-
era)

These parameters are also available over the GenICam interface with slightly different names and partly
with different units or data types (see GigE Vision 2.0/GenICam image interface, Section 7.6).

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s Camera page. The name in the
Web GUI is given in brackets behind the parameter name and the parameters are listed in the order
they appear in the Web GUI.

Roboception GmbH
Manual: rc_visard_ng

34 Rev: 26.01.3
Status: Jan 30, 2026

6.1. Camera module

Fig. 6.1: The Web GUI’s Camera page

acquisition_mode (Acquisition Mode)

This values determines the camera acquisition mode. In Continuous mode, the camera will
acquire images at the specified frame rate fps. In Trigger mode, images are only acquired
when the camera receives a trigger signal.

Via the REST-API, this parameter can be set as follows.

API version 2

Roboception GmbH
Manual: rc_visard_ng

35 Rev: 26.01.3
Status: Jan 30, 2026

6.1. Camera module

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?acquisition_

→˓mode=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?acquisition_mode=<value>

trigger_source (Trigger Source)

This value is only used when acquisition_mode is set to Trigger and determines the
source for the trigger. In Software mode a trigger can be sent via the rc_camera/
acquisition_trigger service. When the acquisition_mode for the depth images is set to
SingleFrame or SingleFrameOut1 (see sect-disp-image-parameters, Section ??), the cam-
era software trigger is sent automatically whenever a depth image acquisition is triggered.
The modes In1 and In2 are hardware trigger modes. An image is acquired whenever a
signal on the chosen input is received.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?trigger_

→˓source=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?trigger_source=<value>

trigger_activation (Trigger Activation)

This value is only used when acquisition_mode is set to Trigger and trigger_source is
set to In1 or In2. It determines the signal edge that should be used to trigger an acquisition.
Possible values are RisingEdge, FallingEdge or AnyEdge.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?trigger_

→˓activation=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?trigger_activation=<value>

fps (FPS (Hz))

This value is the cameras’ frame rate (fps, frames per second), which determines the upper
frequency at which depth images can be computed. This is also the frequency at which the
rc_visard NG delivers images via GigE Vision. Reducing this frequency also reduces the
network bandwidth required to transmit the images.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?fps=<value>

Roboception GmbH
Manual: rc_visard_ng

36 Rev: 26.01.3
Status: Jan 30, 2026

6.1. Camera module

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?fps=<value>

The camera always runs with 25 Hz when in Continuous acquisition mode to ensure proper
working of internal modules such as visual odometry that need a constant frame rate. The
user frame rate setting is implemented by excluding frames for stereo matching and trans-
mission via GigE Vision to reduce bandwidth as shown in the following figure.

Internal acquisition
Camera image

Fig. 6.2: Images are internally always captured with 25 Hz. The fps parameter determines how many
of them are sent as camera images via GigE Vision.

gamma (Gamma)

The gamma value determines the mapping of perceived light to the brightness of a pixel. A
gamma value of 1 corresponds to a linear relationship. Lower gamma values let dark image
parts appear brighter. A value around 0.5 corresponds to human vision.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?gamma=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?gamma=<value>

exp_control (Exposure Auto, HDR or Manual)

The exposure control mode can be set to Auto, HDR or Manual. This replaces the depre-
cated exp_auto parameter.

Auto: This is the default mode in which the exposure time and gain factor is chosen auto-
matically to correctly expose the image. The last automatically determined exposure and
gain values are set into exp_value and gain_value when switching auto-exposure off.

HDR: The HDR mode computes high-dynamic-range images by combining images with
different exposure times to avoid under-exposed and over-exposed areas. This decreases
the frame rate and is only suitable for static scenes.

Manual : In the manual exposure mode the exposure time and gain are kept fixed indepen-
dent of the resulting image brightness.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?exp_control=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_control=<value>

Roboception GmbH
Manual: rc_visard_ng

37 Rev: 26.01.3
Status: Jan 30, 2026

6.1. Camera module

exp_auto_mode (Auto Exposure Mode)

The auto exposure mode can be set to Normal, Out1High or AdaptiveOut1. These modes
are relevant when the rc_visard NG is used with an external light source or projector con-
nected to the camera’s GPIO Out1, which can be controlled by the IOControl module (IO
and Projector Control , Section 6.3.4).

Normal : All images are considered for exposure control, except if the IOControl mode for
GPIO Out1 is ExposureAlternateActive: then only images where GPIO Out1 is HIGH will be
considered, since these images may be brighter in case GPIO Out1 is used to trigger an
external light source.

Out1High: This exposure mode adapts the exposure time using only images with GPIO Out1
HIGH. Images where GPIO Out1 is LOW are not considered at all, which means, that the
exposure time does not change when only images with Out1 LOW are acquired. This mode
is recommended for using the acquisition_mode SingleFrameOut1 in the stereo matching
module as described in Stereo Matching Parameters (Section ??) and having an external
projector connected to GPIO Out1, when changes in the brightness of the scene should
only be considered when Out1 is HIGH. This is the case, for example, when a bright part of
the robot moves through the field of view of the camera just before a detection is triggered,
which should not affect the exposure time.

AdaptiveOut1: This exposure mode uses all camera images and tracks the exposure dif-
ference between images with GPIO Out1 LOW and HIGH. While the IOControl mode for
GPIO Out1 is LOW, the images are under-exposed by this exposure difference to avoid
over-exposure for when GPIO Out1 triggers an external projector. The resulting exposure
difference is given as Out1 Reduction below the live images. This mode is recommended for
using the acquisition_mode SingleFrameOut1 in the stereo matching module as described
in Stereo Matching Parameters (Section ??) and having an external projector connected to
GPIO Out1, when changes in the brightness of the scene should be considered at all times.
This is the case, for example, in applications where the external lighting changes.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?exp_auto_mode=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_auto_mode=<value>

exp_max (Max Exposure)

This value is the maximal exposure time in auto-exposure mode in seconds. The actual
exposure time is adjusted automatically so that the images are exposed correctly. If the
maximum exposure time is reached, but the images are still underexposed, the rc_visard
NG stepwise increases the gain to increase the images’ brightness. Limiting the exposure
time is useful for avoiding or reducing motion blur during fast movements. However, higher
gain introduces noise into the image. The best trade-off depends on the application.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?exp_max=
→˓<value>

API version 1 (deprecated)

Roboception GmbH
Manual: rc_visard_ng

38 Rev: 26.01.3
Status: Jan 30, 2026

6.1. Camera module

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_max=<value>

exp_auto_average_max (Max Brightness) and exp_auto_average_min (Min Brightness)

The auto-exposure tries to set the exposure time and gain factor such that the average
intensity (i.e. brightness) in the image or exposure region is between a maximum and a
minimum. The maximum brightness will be used if there is no saturation, e.g. no over-
exposure due to bright surfaces or reflections. In case of saturation, the exposure time and
gain factor are reduced, but only down to the minimum brightness.

The maximum brightness has precedence over the minimum brightness parameter. If the
minimum brightness is larger than the maximum brightness, the auto-exposure always tries
to make the average intensity equal to the maximum brightness.

The current brightness is always shown in the status bar below the images.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?<exp_auto_

→˓average_max|exp_auto_average_min>=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<exp_auto_average_max|exp_auto_

→˓average_min>=<value>

exp_offset_x, exp_offset_y, exp_width, exp_height (Exposure Region)

These values define a rectangular region in the left rectified image for limiting the area used
for computing the auto exposure. The exposure time and gain factor of both images are
chosen to optimally expose the defined region. This can lead to over- or underexposure of
image parts outside the defined region. If either the width or height is 0, then the whole left
and right images are considered by the auto exposure function. This is the default.

The region is visualized in the Web GUI by a rectangle in the left rectified image. It can
be defined using the sliders or by selecting it in the image after pressing the button Select
Region in Image.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?<exp_offset_

→˓x|exp_offset_y|exp_width|exp_height>=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<exp_offset_x|exp_offset_y|exp_

→˓width|exp_height>=<value>

exp_value (Exposure)

This value is the exposure time in manual exposure mode in seconds. This expo-
sure time is kept constant even if the images are underexposed.

Via the REST-API, this parameter can be set as follows.

Roboception GmbH
Manual: rc_visard_ng

39 Rev: 26.01.3
Status: Jan 30, 2026

6.1. Camera module

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?exp_value=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_value=<value>

gain_value (Gain (dB))

This value is the gain factor in decibel that can be set in manual exposure mode. Higher
gain factors reduce the required exposure time but introduce noise.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?gain_value=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?gain_value=<value>

wb_auto (White Balance Auto or Manual)

This value can be set to true for automatic white balancing or false for manually setting the
ratio between the colors using wb_ratio_red and wb_ratio_blue. The last automatically
determined ratios are set into wb_ratio_red and wb_ratio_blue when switching automatic
white balancing off. White balancing is without function for monochrome cameras and will
not be displayed in the Web GUI in this case.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?wb_auto=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?wb_auto=<value>

wb_ratio_blue and wb_ratio_red (Blue | Green and Red | Green)

These values are used to set blue to green and red to green ratios for manual white balance. White
balancing is without function for monochrome cameras and will not be displayed in the Web GUI in this
case.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?<wb_ratio_blue|wb_ratio_

→˓red>=<value>

API version 1 (deprecated)

Roboception GmbH
Manual: rc_visard_ng

40 Rev: 26.01.3
Status: Jan 30, 2026

6.1. Camera module

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<wb_ratio_blue|wb_ratio_red>=<value>

6.1.3.2 Status values

This module reports the following status values:

Table 6.2: The rc_camera module’s status values
Name Description
baseline Stereo baseline 𝑡 in meters
brightness Current brightness of the image as value between 0 and 1
color 0 for monochrome cameras, 1 for color cameras
device_trigger_sources Gives the available trigger sources
exp Current exposure time in seconds. This value is shown below the

image preview in the Web GUI as Exposure (ms).
focal Focal length factor normalized to an image width of 1
fps Current frame rate of the camera images in Hertz. This value is shown

in the Web GUI below the image preview as FPS (Hz).
gain Current gain factor in decibel. This value is shown in the Web GUI

below the image preview as Gain (dB).
gamma Current gamma value.
height Height of the camera image in pixels. This value is shown in the Web

GUI below the image preview as the second part of Resolution (px).
last_timestamp_grabbed Timestamp of the last image acquired in case the camera is in trigger

mode
out1_reduction Fraction of reduction (0.0 - 1.0) of brightness for images with GPIO

Out1=LOW in exp_auto_mode=AdaptiveOut1 or
exp_auto_mode=Out1High. This value is shown in the Web GUI below
the image preview as Out1 Reduction (%).

params_override_active 1 if parameters are temporarily overwritten by a calibration process
selfcalib_counter How often a correction has been performed by the self-calibration
selfcalib_offset Current offset determined by the self-calibration
temp_left Temperature of the left camera sensor in degrees Celsius
temp_right Temperature of the right camera sensor in degrees Celsius
test 0 for live images and 1 for test images
time Processing time for image grabbing in seconds
width Width of the camera image in pixels. This value is shown in the Web

GUI below the image preview as the first part of Resolution (px).

6.1.3.3 Services

The camera module offers the following services.

acquisition_trigger

Triggers an image acquisition when acquisition_mode is set to Trigger and
trigger_source is set to Software.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/acquisition_trigger

Roboception GmbH
Manual: rc_visard_ng

41 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/services/acquisition_trigger

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "acquisition_trigger",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.2 Detection & Measure modules

The rc_visard NG offers software modules for different detection and measuring applications:

• Measure (rc_measure, Section 6.2.1) provides measure functionalities, such as depth measure-
ments.

Roboception GmbH
Manual: rc_visard_ng

42 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

• LoadCarrier (rc_load_carrier, Section 6.2.2) allows detecting load carriers and their filling lev-
els.

• TagDetect (rc_april_tag_detect and rc_qr_code_detect, Section 6.2.3) allows the detection
of AprilTags and QR codes, as well as the estimation of their poses.

• ItemPick (rc_itempick, Section 6.2.4) provides an out-of-the-box perception solution for robotic
pick-and-place applications of unknown objects.

• BoxPick (rc_boxpick, Section 6.2.5) provides an out-of-the-box perception solution for robotic
pick-and-place applications of boxes or textured boxes.

• SilhouetteMatch (rc_silhouettematch, Section 6.2.6) provides an object detection solution for
objects placed on a plane or stacked planar objects.

• CADMatch (rc_cadmatch, Section 6.2.7) provides an object detection solution for 3D objects.

These modules are optional and can be activated by purchasing a separate license (Section 9.4).

6.2.1 Measure

6.2.1.1 Introduction

The Measure module allows measuring of depth values in a specific region of interest.

The Measure module is a base module which is available on every rc_visard NG.

6.2.1.2 Measuring Depth

The Measure module provides functionality to measure depth values in the current scene in a 2D region
of interest. Optionally, the region of interest can be subdivided into up to 100 cells, for which separate
depth measurements are returned in addition to the overall depth measurements of the whole region.

A depth measurement consist of the average depth mean_z, the minimum depth min_z and the maximum
depth max_z, each containing 3D coordinates. The coordinates of the min_z and max_z measurements
correspond to the point in the cell or overall region with the minimum and maximum distance from the
camera, respectively. The x and y coordinates of the mean_z measurements define a point in the center
of the cell or the overall region and the z coordinate is determined by the average of all depth value
measurements (distances from the camera) in this region. Additionally, a coverage value is returned for
each cell and the overall region, which is a number between 0 and 1 that reflects the fraction of valid
depth values inside the respective region. A coverage value of 0 means that the cell is invalid and no
depth value could be computed.

When the external pose_frame is used for the depth measurements, all 3D coordinates are computed
as described above, but then transformed to the external frame. That means, the depth is always
measured along the line of sight of the camera, independently of the chosen pose frame.

6.2.1.3 Interaction with other modules

Internally, the Measure module depends on, and interacts with other on-board modules as listed below.

Note: All changes and configuration updates to these modules will affect the performance of the
Measure module.

Depth Images

The Measure module internally makes use of the following data:

• Disparity images from the stereo_matching (rc_stereomatching, Section ??)

Roboception GmbH
Manual: rc_visard_ng

43 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Hand-eye calibration

In case the camera has been calibrated to a robot, the Measure module can automatically provide
points in the robot coordinate frame. For the Measure node’s Services (Section 6.2.1.6), the frame of
the output points can be controlled with the pose_frame argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). All points provided by the module are in the camera frame, and no prior
knowledge about the pose of the camera in the environment is required. It is the user’s respon-
sibility to update the configured points if the camera frame moves (e.g. with a robot-mounted
camera).

2. External frame (external). All points provided by the module are in the external frame, configured
by the user during the hand-eye calibration process. The module relies on the on-board Hand-eye
calibration module (Section 6.3.1) to retrieve the sensor mounting (static or robot mounted) and
the hand-eye transformation. If the mounting is static, no further information is needed. If the
sensor is robot-mounted, the robot_pose is required to transform poses to and from the external
frame.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

All pose_frame values that are not camera or external are rejected.

6.2.1.4 Parameters

The Measure module is called rc_measure in the REST-API and is represented in the Web GUI (Section
7.1) under Modules → Measure.

Parameter overview

This module has no run-time parameters.

6.2.1.5 Status values

The Measure module reports the following status values:

Table 6.3: The rc_measure module’s status values
Name Description
data_acquisition_time Time in seconds required to acquire depth image
last_timestamp_processed The timestamp of the last processed depth image
processing_time Processing time of the last measurement in seconds

6.2.1.6 Services

The user can explore and call the Measure module’s services, e.g. for development and testing, using
the REST-API interface (Section 7.2) or the rc_visard NG Web GUI (Section 7.1) on the Measure page
under Modules.

The Measure module offers the following services.

Roboception GmbH
Manual: rc_visard_ng

44 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

measure_depth

Computes the mean, minimum and maximum depth in a given region of interest, which can
optionally be subdivided into cells.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_measure/services/measure_depth

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_measure/services/measure_depth

Request

Required arguments:

pose_frame: see Hand-eye calibration (Section 6.2.1.3).

Optional arguments:

region_of_interest_2d_id is the ID of the 2D region of interest (see RoiDB, Sec-
tion 6.4.2) that will be used for the depth measurements.

region_of_interest_2d is an alternative on-the-fly definition of the region of in-
terest for the depth measurements. This region of interest will be ignored if a
region_of_interest_2d_id is given. The region of interest is always defined on
the camera image with full resolution, where offset_x and offset_y are the pixel
coordinates of the upper left corner of the rectangular region of interest, and width
and height are the width and height of it in pixels. Default is a region of interest
covering the whole image.

cell_count is the number of cells in x and y direction into which the region of
interest is divided. If not given, a cell count of 0, 0 is assumed and only the overall
values will be computed. The total cell count is computed as product of the x and
y values must not exceed 100.

data_acquisition_mode: if set to CAPTURE_NEW (default), a new image dataset will
be used for the measurement. If set to USE_LAST, the previous dataset will be used
for the measurement.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.2.1.3).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"cell_count": {
"x": "uint32",
"y": "uint32"

},
"data_acquisition_mode": "string",
"pose_frame": "string",
"region_of_interest_2d": {
"height": "uint32",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

},

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

45 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"region_of_interest_2d_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

cells contains the depth measurements of all requested cells. The cells are always ordered
from left to right and top to bottom in image coordinates.

overall contains the depth measurements of the full region of interest.

coverage contains the valid pixel ratio as described in Measuring Depth (Section 6.2.1.2).

mean_z, min_z and max_z contains the measurement coordinates as described in Measuring
Depth (Section 6.2.1.2).

region_of_interest_2d returns the definition of the requested region of interest for the
depth measurement.

pose_frame contains the pose frame of the depth measurement coordinates.

The definition for the response with corresponding datatypes is:

{
"name": "measure_depth",
"response": {
"cell_count": {
"x": "uint32",
"y": "uint32"

},
"cells": [
{

"coverage": "float64",
"max_z": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"mean_z": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"min_z": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

],

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

46 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"overall": {
"coverage": "float64",
"max_z": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"mean_z": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"min_z": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"region_of_interest_2d": {
"height": "uint32",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

},
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

6.2.1.7 Return codes

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate
that the service failed. Positive return_code values indicate that the service succeeded with additional
information. The smaller value is selected in case a service has multiple return_code values, but all
messages are appended in the return_code message.

The following table contains a list of common codes:

Table 6.4: Return codes of the Measure module’s services
Code Description

0 Success
-1 An invalid argument was provided

6.2.2 LoadCarrier

6.2.2.1 Introduction

The LoadCarrier module allows the detection of load carriers, which is usually the first step when objects
or grasp points inside a bin should be found. The models of the load carriers to be detected have to be

Roboception GmbH
Manual: rc_visard_ng

47 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

defined in the LoadCarrierDB (Section 6.4.1) module.

The LoadCarrier module is an optional on-board module of the rc_visard NG and is licensed with any of
the modules ItemPick (Section 6.2.4) and BoxPick (Section 6.2.5) or CADMatch (Abschnitt 6.2.7) und
SilhouetteMatch (Abschnitt 6.2.6). Otherwise it requires a separate LoadCarrier license (Section 9.4) to
be purchased.

6.2.2.2 Detection of load carriers

The load carrier detection algorithm detects load carriers that match a specific load carrier model, which
must be defined in the LoadCarrierDB (Section 6.4.1) module. The load carrier model is referenced by
its ID, which is passed to the load carrier detection. The detection of a load carrier is based on the
detection of its rectangular rim. For this, it uses lines detected in the left camera image and the depth
values of the load carrier rim. Thus, the rim should form a contrast to the background and the disparity
image must be dense on the rim.

If multiple load carriers of the specified load carrier ID are visible in the scene, all of them will be detected
and returned by the load carrier detection.

By default, when assume_gravity_aligned is true and gravity measurements are available, the algo-
rithm searches for load carriers whose rim planes are perpendicular to the measured gravity vector. To
detect tilted load carriers, assume_gravity_aligned must be set to false or the load carrier’s approxi-
mate orientation must be specified as pose and the pose_type should be set to ORIENTATION_PRIOR.

Load carriers can be detected at a distance of up to 3 meters from the camera.

When a 3D region of interest (see RoiDB, Section 6.4.2) is used to limit the volume in which load carriers
should be detected, only the load carriers’ rims must be fully included in the region of interest.

The detection algorithm returns the poses of the load carriers’ origins (see Load carrier definition, Sec-
tion 6.4.1.2) in the desired pose frame.

The detection functionality also determines if the detected load carriers are overfilled, which means,
that objects protrude from the plane defined by the load carrier’s outer part of the rim.

x
z

outer_dimensions.x
inner_dimensions.x

inn
er
_d
im
en
sio
ns
.y

ou
ter
_d
im
en
sio
ns
.y

inner_dim
ensions.z

outer_dim
ensions.z

y
z

rim
_th

ick
ne
ss
.y

rim_thickness.x

x
y

Fig. 6.3: Load carrier models and reference frames

6.2.2.3 Detection of filling level

The LoadCarrier module offers the detect_filling_level service to compute the filling level of all
detected load carriers.

The load carriers are subdivided into a configurable number of cells in a 2D grid. The maximum number
is 10x10 cells. For each cell, the following values are reported:

Roboception GmbH
Manual: rc_visard_ng

48 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

• level_in_percent: minimum, maximum and mean cell filling level in percent from the load carrier
floor. These values can be larger than 100% if the cell is overfilled.

• level_free_in_meters: minimum, maximum and mean cell free level in meters from the load
carrier rim. These values can be negative if the cell is overfilled.

• cell_size: dimensions of the 2D cell in meters.

• cell_position: position of the cell center in meters (either in camera or external frame, see
Hand-eye calibration, Section 6.2.2.4). The z-coordinate is on the level of the load carrier rim.

• coverage: represents the proportion of valid pixels in this cell. It varies between 0 and 1 with steps
of 0.1. A low coverage indicates that the cell contains several missing data (i.e. only a few points
were actually measured in this cell).

These values are also calculated for the whole load carrier itself. If no cell subdivision is specified, only
the overall filling level is computed.

Fig. 6.4: Visualizations of the load carrier filling level: overall filling level without grid (left), 4x3 grid
(center), 8x8 grid (right). The load carrier content is shown in a green gradient from white (on the load
carrier floor) to dark green. The overfilled regions are visualized in red. Numbers indicate cell IDs.

6.2.2.4 Interaction with other modules

Internally, the LoadCarrier module depends on, and interacts with other on-board modules as listed
below.

Note: All changes and configuration updates to these modules will affect the performance of the
LoadCarrier module.

Camera and depth data

The LoadCarrier module makes internally use of the following data:

• Rectified images from the Camera module (rc_camera, Section 6.1);

• Disparity, error, and confidence images from the stereo_matching (rc_stereomatching, Section
??)

All processed images are guaranteed to be captured after the module trigger time.

IO and Projector Control

In case the rc_visard NG is used in conjunction with an external random dot projector and the IO and
Projector Control module (rc_iocontrol, Section 6.3.4), it is recommended to connect the projector
to GPIO Out 1 and set the stereo-camera module’s acquisition mode to SingleFrameOut1 (see Stereo
matching parameters, Section ??), so that on each image acquisition trigger an image with and without
projector pattern is acquired.

Roboception GmbH
Manual: rc_visard_ng

49 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Alternatively, the output mode for the GPIO output in use should be set to ExposureAlternateActive
(see Description of run-time parameters, Section 6.3.4.1).

In either case, the Auto Exposure Mode exp_auto_mode should be set to AdaptiveOut1 to optimize the
exposure of both images.

No additional changes are required to use the LoadCarrier module in combination with a random dot
projector.

Hand-eye calibration

In case the camera has been calibrated to a robot, the LoadCarrier module can automatically provide
poses in the robot coordinate frame. For the LoadCarrier node’s Services (Section 6.2.2.7), the frame
of the output poses can be controlled with the pose_frame argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses provided by the module are in the camera frame, and no
prior knowledge about the pose of the camera in the environment is required. This means that
the configured load carriers move with the camera. It is the user’s responsibility to update the
configured poses if the camera frame moves (e.g. with a robot-mounted camera).

2. External frame (external). All poses provided by the module are in the external frame, configured
by the user during the hand-eye calibration process. The module relies on the on-board Hand-eye
calibration module (Section 6.3.1) to retrieve the sensor mounting (static or robot mounted) and
the hand-eye transformation. If the mounting is static, no further information is needed. If the
sensor is robot-mounted, the robot_pose is required to transform poses to and from the external
frame.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

All pose_frame values that are not camera or external are rejected.

6.2.2.5 Parameters

The LoadCarrier module is called rc_load_carrier in the REST-API and is represented in the Web
GUI (Section 7.1) under Modules → LoadCarrier. The user can explore and configure the LoadCarrier
module’s run-time parameters, e.g. for development and testing, using the Web GUI or the REST-API
interface (Section 7.2).

Parameter overview

This module offers the following run-time parameters:

Roboception GmbH
Manual: rc_visard_ng

50 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Table 6.5: The rc_load_carrier module’s run-time parameters
Name Type Min Max Default Description
assume_gravity_aligned bool false true true When true, only gravity-aligned load

carriers are detected, if gravity mea-
surement is available.

crop_distance float64 0.0 0.05 0.005 Safety margin in meters by which
the load carrier inner dimensions
are reduced to define the region of
interest for detection

min_plausibility float64 0.0 0.99 0.8 Indicates how much of the plane
surrounding the load carrier rim
must be free to count as valid de-
tection

model_tolerance float64 0.003 0.025 0.008 Indicates how much the estimated
load carrier dimensions are allowed
to differ from the load carrier model
dimensions in meters

Description of run-time parameters

Each run-time parameter is represented by a row on the LoadCarrier Settings section of the Web GUI’s
LoadCarrier page under Modules. The name in the Web GUI is given in brackets behind the parameter
name and the parameters are listed in the order they appear in the Web GUI. The parameters are
prefixed with load_carrier_ when they are used outside the rc_load_carrier module from another
detection module using the REST-API interface (Section 7.2).

assume_gravity_aligned (Assume Gravity Aligned)

If this parameter is set to true, then only load carriers without tilt will be detected. This
can speed up the detection. If this parameter is set to false, tilted load carriers will also be
detected.

This parameter is ignored for load carriers with an orientation prior.

model_tolerance (Model Tolerance)

indicates how much the estimated load carrier dimensions are allowed to differ from the load
carrier model dimensions in meters.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_load_carrier/parameters?model_tolerance=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/parameters?model_tolerance=<value>

crop_distance (Crop Distance)

sets the safety margin in meters by which the load carrier’s inner dimensions are reduced to
define the region of interest for detection (ref. Fig. 6.35).

Roboception GmbH
Manual: rc_visard_ng

51 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_load_carrier/parameters?crop_distance=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/parameters?crop_distance=<value>

min_plausibility (Minimum Plausibility):

The minimum plausibility defines how much of the plane around the load carrier rim must
at least be free to count as valid detection. Increase the minimal plausibility to reject false
positive detections and decrease the value in case a clearly visible load carrier cannot be
detected.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_load_carrier/parameters?min_plausibility=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/parameters?min_plausibility=<value>

6.2.2.6 Status values

The LoadCarrier module reports the following status values:

Table 6.6: The rc_load_carrier module’s status values
Name Description
data_acquisition_time Time in seconds required to acquire image pair
last_timestamp_processed The timestamp of the last processed image pair
load_carrier_detection_time Processing time of the last detection in seconds

6.2.2.7 Services

The user can explore and call the LoadCarrier module’s services, e.g. for development and testing, us-
ing the REST-API interface (Section 7.2) or the rc_visard NG Web GUI (Section 7.1) on the LoadCarrier
page under Modules.

The LoadCarrier module offers the following services.

detect_load_carriers

Triggers a load carrier detection as described in Detection of load carriers (Section 6.2.2.2).

Details

This service can be called as follows.

API version 2

Roboception GmbH
Manual: rc_visard_ng

52 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

PUT http://<host>/api/v2/pipelines/0/nodes/rc_load_carrier/services/detect_load_

→˓carriers

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/detect_load_carriers

Request

Required arguments:

pose_frame: see Hand-eye calibration (Section 6.2.2.4).

load_carrier_ids: IDs of the load carriers which should be detected. Currently
only one ID can be specified.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.2.2.4).

Optional arguments:

region_of_interest_id: ID of the 3D region of interest where to search for the
load carriers.

region_of_interest_2d_id: ID of the 2D region of interest where to search for
the load carriers.

Note: Only one type of region of interest can be set.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"load_carrier_ids": [
"string"

],
"pose_frame": "string",
"region_of_interest_2d_id": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

load_carriers: list of detected load carriers.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

Roboception GmbH
Manual: rc_visard_ng

53 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

{
"name": "detect_load_carriers",
"response": {
"load_carriers": [
{

"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

detect_filling_level

Triggers a load carrier filling level detection as described in Detection of filling level (Section
6.2.2.3).

Details

Roboception GmbH
Manual: rc_visard_ng

54 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_load_carrier/services/detect_filling_

→˓level

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/detect_filling_level

Request

Required arguments:

pose_frame: see Hand-eye calibration (Section 6.2.2.4).

load_carrier_ids: IDs of the load carriers which should be detected. Currently
only one ID can be specified.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.2.2.4).

Optional arguments:

filling_level_cell_count: Number of cells in the filling level grid.

region_of_interest_id: ID of the 3D region of interest where to search for the
load carriers.

region_of_interest_2d_id: ID of the 2D region of interest where to search for
the load carriers.

Note: Only one type of region of interest can be set.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"filling_level_cell_count": {
"x": "uint32",
"y": "uint32"

},
"load_carrier_ids": [

"string"
],
"pose_frame": "string",
"region_of_interest_2d_id": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Roboception GmbH
Manual: rc_visard_ng

55 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Response

load_carriers: list of detected load carriers and their filling levels.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "detect_filling_level",
"response": {

"load_carriers": [
{

"cells_filling_levels": [
{
"cell_position": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cell_size": {
"x": "float64",
"y": "float64"

},
"coverage": "float64",
"level_free_in_meters": {
"max": "float64",
"mean": "float64",
"min": "float64"

},
"level_in_percent": {
"max": "float64",
"mean": "float64",
"min": "float64"

}
}

],
"filling_level_cell_count": {

"x": "uint32",
"y": "uint32"

},
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overall_filling_level": {

"cell_position": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cell_size": {
"x": "float64",
"y": "float64"

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

56 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

},
"coverage": "float64",
"level_free_in_meters": {
"max": "float64",
"mean": "float64",
"min": "float64"

},
"level_in_percent": {
"max": "float64",
"mean": "float64",
"min": "float64"

}
},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).

Details

This service can be called as follows.

API version 2

Roboception GmbH
Manual: rc_visard_ng

57 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

PUT http://<host>/api/v2/pipelines/0/nodes/rc_load_carrier/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_load_carrier (deprecated)

Persistently stores a load carrier on the rc_visard NG.

API version 2

This service is not available in API version 2. Use set_load_carrier (Section 6.4.1.5) in
rc_load_carrier_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/set_load_carrier

The definitions of the request and response are the same as described in
set_load_carrier (Section 6.4.1.5) in rc_load_carrier_db.

get_load_carriers (deprecated)

Returns the configured load carriers with the requested load_carrier_ids.

API version 2

This service is not available in API version 2. Use get_load_carriers (Section 6.4.1.5) in
rc_load_carrier_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/get_load_carriers

The definitions of the request and response are the same as described in
get_load_carriers (Section 6.4.1.5) in rc_load_carrier_db.

Roboception GmbH
Manual: rc_visard_ng

58 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

delete_load_carriers (deprecated)

Deletes the configured load carriers with the requested load_carrier_ids.

API version 2

This service is not available in API version 2. Use delete_load_carriers (Section 6.4.1.5) in
rc_load_carrier_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/delete_load_carriers

The definitions of the request and response are the same as described in
delete_load_carriers (Section 6.4.1.5) in rc_load_carrier_db.

set_region_of_interest (deprecated)

Persistently stores a 3D region of interest on the rc_visard NG.

API version 2

This service is not available in API version 2. Use set_region_of_interest (Section 6.4.2.4)
in rc_roi_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/set_region_of_interest

The definitions of the request and response are the same as described in
set_region_of_interest (Section 6.4.2.4) in rc_roi_db.

get_regions_of_interest (deprecated)

Returns the configured 3D regions of interest with the requested region_of_interest_ids.

API version 2

This service is not available in API version 2. Use get_regions_of_interest (Section 6.4.2.4)
in rc_roi_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/get_regions_of_interest

The definitions of the request and response are the same as described in
get_regions_of_interest (Section 6.4.2.4) in rc_roi_db.

delete_regions_of_interest (deprecated)

Deletes the configured 3D regions of interest with the requested region_of_interest_ids.

API version 2

This service is not available in API version 2. Use delete_regions_of_interest (Section
6.4.2.4) in rc_roi_db instead.

Roboception GmbH
Manual: rc_visard_ng

59 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/delete_regions_of_interest

The definitions of the request and response are the same as described in
delete_regions_of_interest (Section 6.4.2.4) in rc_roi_db.

set_region_of_interest_2d (deprecated)

Persistently stores a 2D region of interest on the rc_visard NG.

API version 2

This service is not available in API version 2. Use set_region_of_interest_2d (Section
6.4.2.4) in rc_roi_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/set_region_of_interest_2d

The definitions of the request and response are the same as described in
set_region_of_interest_2d (Section 6.4.2.4) in rc_roi_db.

get_regions_of_interest_2d (deprecated)

Returns the configured 2D regions of interest with the requested
region_of_interest_2d_ids.

API version 2

This service is not available in API version 2. Use get_regions_of_interest_2d (Section
6.4.2.4) in rc_roi_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/get_region_of_interest_2d

The definitions of the request and response are the same as described in
get_regions_of_interest_2d (Section 6.4.2.4) in rc_roi_db.

delete_regions_of_interest_2d (deprecated)

Deletes the configured 2D regions of interest with the requested
region_of_interest_2d_ids.

API version 2

This service is not available in API version 2. Use delete_regions_of_interest_2d (Section
6.4.2.4) in rc_roi_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/delete_regions_of_interest_2d

Roboception GmbH
Manual: rc_visard_ng

60 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

The definitions of the request and response are the same as described in
delete_regions_of_interest_2d (Section 6.4.2.4) in rc_roi_db.

6.2.2.8 Return codes

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate
that the service failed. Positive return_code values indicate that the service succeeded with additional
information. The smaller value is selected in case a service has multiple return_code values, but all
messages are appended in the return_code message.

The following table contains a list of common codes:

Table 6.7: Return codes of the LoadCarrier module’s services
Code Description

0 Success
-1 An invalid argument was provided
-4 Data acquisition took longer than allowed
-10 New element could not be added as the maximum storage capacity of load carriers has

been exceeded
-11 Sensor not connected, not supported or not ready
-12 Resource busy, e.g. when trigger_dump is called too frequently

-302 More than one load carrier provided to the detect_load_carriers or
detect_filling_level services, but only one is supported

3 The detection timeout during load carrier detection has been reached. Consider reducing
the model tolerance.

10 The maximum storage capacity of load carriers has been reached
11 An existent persistent model was overwritten by the call to set_load_carrier

100 The requested load carriers were not detected in the scene
102 The detected load carrier has no points inside
300 A valid robot_pose was provided as argument but it is not required

6.2.3 TagDetect

6.2.3.1 Introduction

The TagDetect modules are optional on-board modules of the rc_visard NG and require separate li-
censes (Section 9.4) to be purchased. The licenses are included in every rc_visard NG purchased after
01.07.2020.

The TagDetect modules run on board the rc_visard NG and allow the detection of 2D matrix codes and
tags. Currently, there are TagDetect modules for QR codes and AprilTags. The modules, furthermore,
compute the position and orientation of each tag in the 3D camera coordinate system, making it simple
to manipulate a tag with a robot or to localize the camera with respect to a tag.

Tag detection is made up of three steps:

1. Tag reading on the 2D image pair (see Tag reading, Section 6.2.3.2).

2. Estimation of the pose of each tag (see Pose estimation, Section 6.2.3.3).

3. Re-identification of previously seen tags (see Tag re-identification, Section 6.2.3.4).

In the following, the two supported tag types are described, followed by a comparison.

Roboception GmbH
Manual: rc_visard_ng

61 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

QR code

Fig. 6.5: Sample QR code

QR codes are two-dimensional matrix codes that contain arbitrary user-defined data. There is wide
support for decoding of QR codes on commodity hardware such as smartphones. Also, many online
and offline tools are available for the generation of such codes.

The “pixels” of a QR code are called modules. Appearance and resolution of QR codes change with
the amount of data they contain. While the special patterns in the three corners are always 7 modules
wide, the number of modules between them increases the more data is stored. The lowest-resolution
QR code is of size 21x21 modules and can contain up to 152 bits.

Even though many QR code generation tools support generation of specially designed QR codes (e.g.,
containing a logo, having round corners, or having dots as modules), a reliable detection of these tags
by the rc_visard NG’s TagDetect module is not guaranteed. The same holds for QR codes which contain
characters that are not part of regular ASCII.

AprilTag

Fig. 6.6: A 16h5 tag (left), a 36h11 tag (center) and a 41h12 tag (right). AprilTags consist of a mandatory
white (a) and black (b) border and a variable amount of data bits (c).

AprilTags are similar to QR codes. However, they are specifically designed for robust identification at
large distances. As for QR codes, we will call the tag pixels modules. Fig. 6.6 shows how AprilTags are
structured. They have a mandatory white and black border, each one module wide. The tag families
16h5, 25h9, 36h10 and 36h11 are surrounded by this border and carry a variable amount of data
modules in the center. For tag family 41h12, the black and white border is shifted towards the inside

Roboception GmbH
Manual: rc_visard_ng

62 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

and the data modules are in the center and also at the border of the tags. Other than QR codes,
AprilTags do not contain any user-defined information but are identified by a predefined family and ID.
The tags in Fig. 6.6 for example are of family 16h5, 36h11 and 41h12 have id 0, 11 and 0, respectively.
All supported families are shown in Table 6.8.

Table 6.8: AprilTag families
Family Number of tag IDs Recommended
16h5 30 -
25h9 35 o
36h10 2320 o
36h11 587 +
41h12 2115 +

For each family, the number before the “h” states the number of data modules contained in the tag: While
a 16h5 tag contains 16 (4x4) data modules ((c) in Fig. 6.6), a 36h11 tag contains 36 (6x6) modules and
a 41h12 tag contains 41 (3x3 inner + 4x8 outer) modules. The number behind the “h” refers to the
Hamming distance between two tags of the same family. The higher, the more robust is the detection,
but the fewer individual tag IDs are available for the same number of data modules (see Table 6.8).

The advantage of fewer modules (as for 16h5 compared to 36h11) is the lower resolution of the tag.
Hence, each tag module is larger and the tag therefore can be detected from a larger distance. This,
however, comes at a price: Firstly, fewer data modules lead to fewer individual tag IDs. Secondly, and
more importantly, detection robustness is significantly reduced due to a higher false positive rate; i.e,
tags are mixed up or nonexistent tags are detected in random image texture or noise. The 41h12 family
has its border shifted towards the inside, which gives it more data modules at a lower number of total
modules compared to the 36h11 family.

For these reasons we recommend using the 41h12 and 36h11 families and highly discourage the use of
the 16h5 family. The latter family should only be used if a large detection distance really is necessary for
an application. However, the maximum detection distance increases only by approximately 25% when
using a 16h5 tag instead of a 36h11 tag.

Pre-generated AprilTags can be downloaded from the website https://github.com/AprilRobotics/
apriltag-imgs. There, each family consists of multiple PNGs containing single tags. Each pixel in the
PNGs corresponds to one AprilTag module. When printing the tags of the families 36h11, 36h10, 25h9
and 16h5 special care must be taken to also include the white border around the tag that is contained
in the PNG (see (a) in Fig. 6.6). Moreover, all tags should be scaled to the desired printing size without
any interpolation, so that the sharp edges are preserved.

Comparison

Both QR codes and AprilTags have their up and down sides. While QR codes allow arbitrary user-
defined data to be stored, AprilTags have a pre-defined and limited set of tags. On the other hand,
AprilTags have a lower resolution and can therefore be detected at larger distances. Moreover, the
continuous white to black border in AprilTags allow for more precise pose estimation.

Note: If user-defined data is not required, AprilTags should be preferred over QR codes.

6.2.3.2 Tag reading

The first step in the tag detection pipeline is reading the tags on the 2D image pair. This step takes most
of the processing time and its precision is crucial for the precision of the resulting tag pose. To control
the speed of this step, the quality parameter can be set by the user. It results in a downscaling of the
image pair before reading the tags. High yields the largest maximum detection distance and highest
precision, but also the highest processing time. Low results in the smallest maximum detection distance
and lowest precision, but processing requires less than half of the time. Medium lies in between. Please

Roboception GmbH
Manual: rc_visard_ng

63 Rev: 26.01.3
Status: Jan 30, 2026

https://github.com/AprilRobotics/apriltag-imgs
https://github.com/AprilRobotics/apriltag-imgs

6.2. Detection & Measure modules

note that this quality parameter has no relation to the quality parameter of sect-stereo-matching (Section
??).

Fig. 6.7: Visualization of module size 𝑠, size of a tag in modules 𝑟, and size of a tag in meters 𝑡 for
AprilTags (left and center) and QR codes (right)

The maximum detection distance 𝑧 at quality High can be approximated by using the following formulae,

𝑧 =
𝑓𝑠

𝑝
,

𝑠 =
𝑡

𝑟
,

where 𝑓 is the focal length (Section 6.1.1) in pixels and 𝑠 is the size of a module in meters. 𝑠 can easily
be calculated by the latter formula, where 𝑡 is the size of the tag in meters and 𝑟 is the width of the code
in modules (for AprilTags without the white border). Fig. 6.7 visualizes these variables. 𝑝 denotes the
number of image pixels per module required for detection. It is different for QR codes and AprilTags.
Moreover, it varies with the tag’s angle to the camera and illumination. Approximate values for robust
detection are:

• AprilTag: 𝑝 = 5 pixels/module

• QR code: 𝑝 = 6 pixels/module

The following tables give sample maximum distances for different situations, assuming a focal length of
1075 pixels and the parameter quality to be set to High.

Table 6.9: Maximum detection distance examples for AprilTags
with a width of 𝑡 = 4 cm

AprilTag family Tag width Maximum distance
36h11 (recommended) 8 modules 1.1 m
16h5 6 modules 1.4 m
41h12 (recommended) 5 modules 1.7 m

Table 6.10: Maximum detection distance examples for QR codes
with a width of 𝑡 = 8 cm

Tag width Maximum distance
29 modules 0.49 m
21 modules 0.70 m

Roboception GmbH
Manual: rc_visard_ng

64 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

6.2.3.3 Pose estimation

For each detected tag, the pose of this tag in the camera coordinate frame is estimated. A requirement
for pose estimation is that a tag is fully visible in the left and right camera image. The coordinate frame
of the tag is aligned as shown below.

Fig. 6.8: Coordinate frames of AprilTags (left and center) and QR codes (right)

The z-axis is pointing “into” the tag. Please note that for AprilTags, although having the white border
included in their definition, the coordinate system’s origin is placed exactly at the transition from the
white to the black border. Since AprilTags do not have an obvious orientation, the origin is defined as
the upper left corner in the orientation they are pre-generated in.

During pose estimation, the tag’s size is also estimated, while assuming the tag to be square. For QR
codes, the size covers the full tag. For AprilTags, the size covers only the part inside the border defined
by the transition from the black to the white border modules, hence ignoring the outermost white border
for the tag families 16h5, 25h9, 36h10 and 36h11.

The user can also specify the approximate size (±10%) of tags. All tags not matching this size constraint
are automatically filtered out. This information is further used to resolve ambiguities in pose estimation
that may arise if multiple tags with the same ID are visible in the left and right image and these tags are
aligned in parallel to the image rows.

Note: For best pose estimation results one should make sure to accurately print the tag and to attach
it to a rigid and as planar as possible surface. Any distortion of the tag or bump in the surface will
degrade the estimated pose.

Note: It is highly recommended to set the approximate size of a tag. Otherwise, if multiple tags with
the same ID are visible in the left or right image, pose estimation may compute a wrong pose if these
tags have the same orientation and are approximately aligned in parallel to the image rows. However,
even if the approximate size is not given, the TagDetect modules try to detect such situations and
filter out affected tags.

Below tables give approximate precisions of the estimated poses of AprilTags. We distinguish between
lateral precision (i.e., in x and y direction) and precision in z direction. It is assumed that quality is set
to High, that the camera’s viewing direction is parallel to the tag’s normal and that the images are well
exposed and do not suffer from motion blur. The size of a tag does not have a significant effect on the
lateral or z precision; however, in general, larger tags improve precision. With respect to precision of
the orientation especially around the x and y axes, larger tags clearly outperform smaller ones.

Roboception GmbH
Manual: rc_visard_ng

65 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Table 6.11: Approximate position precision for AprilTag detections
with High quality in an ideal scenario

Distance rc_visard NG 160 - lateral rc_visard NG 160 - z
0.5 m 0.05 mm 0.3 mm
1.0 m 0.15 mm 1.4 mm
2.0 m 0.5 mm 3.7 mm

Table 6.12: Approximate orientation precision for AprilTag detec-
tions with High quality in an ideal scenario for different tag sizes

Distance 60 x 60 mm 120 x 120 mm
0.5 m 0.2° –
1.0 m 0.8° 0.3°
2.0 m 2.0° 0.8°
3.0 m – 1.8°

6.2.3.4 Tag re-identification

Each tag has an ID; for AprilTags it is the family plus tag ID, for QR codes it is the contained data.
However, these IDs are not unique, since the same tag may appear multiple times in a scene.

For distinction of these tags, the TagDetect modules also assign each detected tag a unique identifier.
To help the user identifying an identical tag over multiple detections, tag detection tries to re-identify
tags; if successful, a tag is assigned the same unique identifier again.

Tag re-identification compares the positions of the corners of the tags in the camera coordinate frame
to find identical tags. Tags are assumed identical if they did not or only slightly move in that frame.

By setting the max_corner_distance threshold, the user can specify how much a tag is allowed move in
the static coordinate frame between two detections to be considered identical. This parameter defines
the maximum distance between the corners of two tags, which is shown in Fig. 6.9. The Euclidean
distances of all four corresponding tag corners are computed in 3D. If none of these distances exceeds
the threshold, the tags are considered identical.

Fig. 6.9: Simplified visualization of tag re-identification. Euclidean distances between associated tag
corners in 3D are compared (red arrows).

After a number of tag detection runs, previously detected tag instances will be discarded if they are not
detected in the meantime. This can be configured by the parameter forget_after_n_detections.

Roboception GmbH
Manual: rc_visard_ng

66 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

6.2.3.5 Hand-eye calibration

In case the camera has been calibrated to a robot, the TagDetect module can automatically provide
poses in the robot coordinate frame. For the TagDetect node’s Services (Section 6.2.3.8), the frame of
the output poses can be controlled with the pose_frame argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses provided by the module are in the camera frame.

2. External frame (external). All poses provided by the module are in the external frame, configured
by the user during the hand-eye calibration process. The module relies on the on-board Hand-eye
calibration module (Section 6.3.1) to retrieve the sensor mounting (static or robot mounted) and
the hand-eye transformation. If the sensor mounting is static, no further information is needed.
If the sensor is robot-mounted, the robot_pose is required to transform poses to and from the
external frame.

All pose_frame values that are not camera or external are rejected.

6.2.3.6 Parameters

There are two separate modules available for tag detection, one for detecting AprilTags and one for
QR codes, named rc_april_tag_detect and rc_qr_code_detect, respectively. Apart from the module
names they share the same interface definition.

In addition to the REST-API interface (Section 7.2), the TagDetect modules provide pages on the Web
GUI under Modules → AprilTag and Modules → QR Code, on which they can be tried out and configured
manually.

In the following, the parameters are listed based on the example of rc_qr_code_detect. They are the
same for rc_april_tag_detect.

This module offers the following run-time parameters:

Table 6.13: The rc_qr_code_detect module’s run-time parame-
ters

Name Type Min Max Default Description
detect_inverted_tags bool false true false Detect tags with black and white ex-

changed
forget_after_n_detections int32 1 1000 30 Number of detection runs after

which to forget about a previous tag
during tag re-identification

max_corner_distance float64 0.001 0.01 0.005 Maximum distance of correspond-
ing tag corners in meters during tag
re-identification

quality string - - High Quality of tag detection: [Low,
Medium, High]

use_cached_images bool false true false Use most recently received image
pair instead of waiting for a new pair

Via the REST-API, these parameters can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/<rc_qr_code_detect|rc_april_tag_detect>/
→˓parameters/parameters?<parameter-name>=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/parameters?
→˓<parameter-name>=<value>

Roboception GmbH
Manual: rc_visard_ng

67 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

6.2.3.7 Status values

The TagDetect modules reports the following status values:

Table 6.14: The rc_qr_code_detect and rc_april_tag_detect
module’s status values

Name Description
data_acquisition_time Time in seconds required to acquire image pair
last_timestamp_processed The timestamp of the last processed image pair
processing_time Processing time of the last detection in seconds
state The current state of the node

The reported state can take one of the following values.

Table 6.15: Possible states of the TagDetect modules
State name Description
IDLE The module is idle.
RUNNING The module is running and ready for tag detection.
FATAL A fatal error has occurred.

6.2.3.8 Services

The TagDetect modules implement a state machine for starting and stopping. The actual tag detection
can be triggered via detect.

The user can explore and call the rc_qr_code_detect and rc_april_tag_detect modules’ services,
e.g. for development and testing, using the REST-API interface (Section 7.2) or the rc_visard NG Web
GUI (Section 7.1).

detect

Triggers a tag detection.

Details

Depending on the use_cached_images parameter, the module will use the latest
received image pair (if set to true) or wait for a new pair that is captured after the
service call was triggered (if set to false, this is the default). Even if set to true, tag
detection will never use one image pair twice.

It is recommended to call detect in state RUNNING only. It is also possible to be
called in state IDLE, resulting in an auto-start and stop of the module. This, how-
ever, has some drawbacks: First, the call will take considerably longer; second,
tag re-identification will not work. It is therefore highly recommended to manually
start the module before calling detect.

Tags might be omitted from the detect response due to several reasons, e.g., if
a tag is visible in only one of the cameras or if pose estimation did not succeed.
These filtered-out tags are noted in the log, which can be accessed as described
in Downloading log files (Section 9.5).

A visualization of the latest detection is shown on the Web GUI tabs of the TagDe-
tect modules. Please note that this visualization will only be shown after calling
the detection service at least once. On the Web GUI, one can also manually try
the detection by clicking the Detect button.

Due to changes in system time on the rc_visard NG there might occur jumps of
timestamps, forward as well as backward. Forward jumps do not have an effect on

Roboception GmbH
Manual: rc_visard_ng

68 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

the TagDetect module. Backward jumps, however, invalidate already received im-
ages. Therefore, in case a backwards time jump is detected, an error of value -102
will be issued on the next detect call, also to inform the user that the timestamps
included in the response will jump back. This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/<rc_qr_code_detect|rc_april_tag_

→˓detect>/services/detect

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/
→˓services/detect

Request

Optional arguments:

tags is the list of tag IDs that the TagDetect module should detect. For QR
codes, the ID is the contained data. For AprilTags, it is “<family>_<id>”,
so, e.g., for a tag of family 36h11 and ID 5, it is “36h11_5”. Naturally,
the AprilTag module can only be triggered for AprilTags, and the QR code
module only for QR codes.

The tags list can also be left empty. In that case, all detected tags will
be returned. This feature should be used only during development and
debugging of an application. Whenever possible, the concrete tag IDs
should be listed, on the one hand avoiding some false positives, on the
other hand speeding up tag detection by filtering tags not of interest.

For AprilTags, the user can not only specify concrete tags but also a com-
plete family by setting the ID to “<family>”, so, e.g., “36h11”. All tags of
this family will then be detected. It is further possible to specify multiple
complete tag families or a combination of concrete tags and complete tag
families; for instance, triggering for “36h11”, “25h9_3”, and “36h10” at the
same time.

In addition to the ID, the approximate size (±10%) of a tag can be set with
the size parameter. As described in Pose estimation (Section 6.2.3.3),
this information helps to resolve ambiguities in pose estimation that may
arise in certain situations and can be used to filter out tags not fulfilling
the given size constraint.

The tags list is OR-connected. All tags will be returned that match any of
id-size pair elements in the tags list.

pose_frame controls whether the poses of the detected tags are re-
turned in the camera or external frame, as detailed in Hand-eye calibra-
tion (Section 6.2.3.5). The default is camera.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose_frame": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

69 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"tags": [

{
"id": "string",
"size": "float64"

}
]

}
}

Response

timestamp is set to the timestamp of the image pair the tag detection ran on.

tags contains all detected tags.

id is the ID of the tag, similar to id in the request.

instance_id is the random unique identifier of the tag assigned by tag re-
identification.

pose contains position and orientation. The orientation is in quaternion format.

pose_frame is set to the coordinate frame above pose refers to. It will either be
“camera” or “external”.

size will be set to the estimated tag size in meters.

return_code holds possible warnings or error codes.

The definition for the response with corresponding datatypes is:

{
"name": "detect",
"response": {
"return_code": {
"message": "string",
"value": "int16"

},
"tags": [

{
"id": "string",
"instance_id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"size": "float64",
"timestamp": {

"nsec": "int32",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

70 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"sec": "int32"
}

}
],
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

start

Starts the module by transitioning from IDLE to RUNNING.

Details

When running, the module receives images from the stereo camera and is ready to perform
tag detections. To save computing resources, the module should only be running when
necessary.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/<rc_qr_code_detect|rc_april_tag_detect>/
→˓services/start

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/services/start

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

stop

Stops the module by transitioning to IDLE.

Details

This transition can be performed from state RUNNING and FATAL. All tag re-
identification information is cleared during stopping.

This service can be called as follows.

API version 2

Roboception GmbH
Manual: rc_visard_ng

71 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

PUT http://<host>/api/v2/pipelines/0/nodes/<rc_qr_code_detect|rc_april_tag_

→˓detect>/services/stop

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/
→˓services/stop

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "stop",
"response": {
"accepted": "bool",
"current_state": "string"

}
}

restart

Restarts the module.

Details

If in RUNNING or FATAL, the module will be stopped and then started. If in IDLE, the
module will be started.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/<rc_qr_code_detect|rc_april_tag_

→˓detect>/services/restart

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/
→˓services/restart

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "restart",
"response": {
"accepted": "bool",
"current_state": "string"

}
}

Roboception GmbH
Manual: rc_visard_ng

72 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

reset_defaults

Resets all parameters of the module to its default values, as listed in above table.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/<rc_qr_code_detect|rc_april_tag_detect>/
→˓services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/services/reset_

→˓defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.2.3.9 Return codes

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate
that the service failed. Positive return_code values indicate that the service succeeded with additional
information. The smaller value is selected in case a service has multiple return_code values, but all
messages are appended in the return_code message.

The following table contains a list of common return codes:

Code Description
0 Success
-1 An invalid argument was provided
-4 A timeout occurred while waiting for the image pair
-9 The license is not valid
-11 Sensor not connected, not supported or not ready
-12 Resource busy, e.g. when trigger_dump is called too frequently
-101 Internal error during tag detection
-102 There was a backwards jump of system time
-103 Internal error during tag pose estimation
-200 A fatal internal error occurred
200 Multiple warnings occurred; see list in message

201 The module was not in state RUNNING

Roboception GmbH
Manual: rc_visard_ng

73 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

6.2.4 ItemPick

6.2.4.1 Introduction

The ItemPick module provides an out-of-the-box perception solution for robotic pick-and-place appli-
cations. ItemPick targets the detection of flat surfaces on unknown objects for picking with a suction
gripper.

In addition, the module offers:

• A dedicated page on the rc_visard NG Web GUI (Section 7.1) for easy setup, configuration, test-
ing, and application tuning.

• The definition of regions of interest to select relevant volumes in the scene (see RoiDB, Section
6.4.2).

• A load carrier detection functionality for bin-picking applications (see LoadCarrier , Section 6.2.2),
to provide grasps for items inside a bin only.

• The definition of compartments inside a load carrier to provide grasps for specific volumes of the
bin only.

• Collision checking between the gripper and the load carrier and/or the point cloud.

• Support for static and robot-mounted cameras and optional integration with the Hand-eye calibra-
tion (Section 6.3.1) module, to provide grasps in the user-configured external reference frame.

• A quality value associated to each suggested grasp and related to the flatness of the grasping
surface.

• Selection of a sorting strategy to sort the returned grasps.

• 3D visualization of the detection results with grasp points and gripper animations in the Web GUI.

Note: In this chapter, cluster and surface are used as synonyms and identify a set of points (or
pixels) with defined geometrical properties.

The module is an optional on-board module of the rc_visard NG and requires a separate ItemPick
license (Section 9.4) to be purchased.

6.2.4.2 Computation of grasps

The ItemPick module offers a service for computing grasps for suction grippers. The gripper is defined
by its suction surface length and width.

The ItemPick module identifies flat surfaces in the scene and supports flexible and/or deformable items.
The type of these item_models is called UNKNOWN since they don’t need to have a standard geometrical
shape. Optionally, the user can also specify the minimum and maximum size of the item.

Optionally, further information can be given to the modules in a grasp computation request:

• The ID of the load carrier which contains the items to be grasped.

• A compartment inside the load carrier where to compute grasps (see Load carrier compartments,
Section 6.4.1.3).

• The ID of the 3D region of interest where to search for the load carriers if a load carrier is set.
Otherwise, the ID of the 3D region of interest where to compute grasps.

• Collision detection information: The ID of the gripper to enable collision checking and optionally
a pre-grasp offset to define a pre-grasp position. Details on collision checking are given below in
CollisionCheck (Section 6.2.4.4).

Roboception GmbH
Manual: rc_visard_ng

74 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

A grasp provided by the ItemPick module represents the recommended pose of the TCP (Tool Center
Point) of the suction gripper. The grasp type is always set to SUCTION.

For ItemPick with an UNKNOWN item model, the computed grasp pose is the center of the biggest ellipse
that can be inscribed in each surface.

The grasp orientation is a right-handed coordinate system and is defined such that its z axis is normal to
the surface pointing inside the object at the grasp position and its x axis is directed along the maximum
elongation of the ellipse. Since the x axis can have two possible directions, the one that better fits
to the preferred TCP orientation (see Setting the preferred orientation of the TCP, Section 6.2.4.3) is
selected. If the run-time parameter allow_any_grasp_z_rotation is set to true, the x axis will not be
forced to be aligned with the maximum elongation of the graspable ellipse, but can have any rotation
around the z axis. In this case, the returned grasp will have the orientation that best fits to the preferred
TCP orientation and is collision free, if collision checking.

Fig. 6.10: Illustration of a suction grasp with coordinate system and ellipse representing the maximum
suction surface

Each grasp includes the dimensions of the maximum suction surface available, modelled as an el-
lipse of axes max_suction_surface_length and max_suction_surface_width. The user is enabled
to filter grasps by specifying the minimum suction surface required by the suction device in use. If
the run-time parameter allow_any_grasp_z_rotation is set to true, max_suction_surface_length and
max_suction_surface_width will be equal and correspond to the shortest axis of the largest graspable
ellipse.

Each grasp also includes a quality value, which gives an indication of the flatness of the grasping
surface. The quality value varies between 0 and 1, where higher numbers correspond to a flatter
reconstructed surface.

The grasp definition is complemented by a uuid (Universally Unique Identifier) and the timestamp of the
oldest image that was used to compute the grasp.

Grasp sorting is performed based on the selected sorting strategy. The following sorting strategies are
available and can be set in the Web GUI (Section 7.1) or using the set_sorting_strategies service
call:

• gravity: highest grasp points along the gravity direction are returned first,

• surface_area: grasp points with the largest surface area are returned first,

• direction: grasp points with the shortest distance along a defined direction vector in a given
pose_frame are returned first.

• distance_to_point: grasp points with the shortest or farthest (if farthest_first is true) distance
from a point in a given pose_frame are returned first.

If no sorting strategy is set or default sorting is chosen in the Web GUI, sorting is done based on a
combination of gravity and surface_area.

Roboception GmbH
Manual: rc_visard_ng

75 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

6.2.4.3 Setting the preferred orientation of the TCP

The ItemPick module determines the reachability of grasp points based on the preferred orientation of
the TCP. The preferred orientation can be set via the set_preferred_orientation service or on the
ItemPick page in the Web GUI. The resulting direction of the TCP’s z axis is used to reject grasps which
cannot be reached by the gripper. Furthermore, the preferred orientation is used to select one grasp of
several possible symmetries that is best reachable for the robot.

The preferred orientation can be set in the camera coordinate frame or in the external coordinate frame,
in case a hand-eye calibration is available. If the preferred orientation is specified in the external coor-
dinate frame and the sensor is robot mounted, the current robot pose has to be given to each object
detection call. If no preferred orientation is set, the orientation of the left camera (see Coordinate frames
) will be used as the preferred orientation of the TCP.

6.2.4.4 Interaction with other modules

Internally, the ItemPick module depends on, and interacts with other on-board modules as listed below.

Note: All changes and configuration updates to these modules will affect the performance of the
ItemPick module.

Camera and depth data

The ItemPick module makes internally use of the following data:

• Rectified images from the Camera module (rc_camera, Section 6.1);

• Disparity, error, and confidence images from the stereo_matching (rc_stereomatching, Section
??)

All processed images are guaranteed to be captured after the module trigger time.

IO and Projector Control

In case the rc_visard NG is used in conjunction with an external random dot projector and the IO and
Projector Control module (rc_iocontrol, Section 6.3.4), it is recommended to connect the projector
to GPIO Out 1 and set the stereo-camera module’s acquisition mode to SingleFrameOut1 (see Stereo
matching parameters, Section ??), so that on each image acquisition trigger an image with and without
projector pattern is acquired.

Alternatively, the output mode for the GPIO output in use should be set to ExposureAlternateActive
(see Description of run-time parameters, Section 6.3.4.1).

In either case, the Auto Exposure Mode exp_auto_mode should be set to AdaptiveOut1 to optimize the
exposure of both images.

Hand-eye calibration

In case the camera has been calibrated to a robot, the ItemPick module can automatically provide
poses in the robot coordinate frame. For the ItemPick node’s Services (Section 6.2.4.7), the frame of
the output poses can be controlled with the pose_frame argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses provided by the modules are in the camera frame, and no
prior knowledge about the pose of the camera in the environment is required. This means that the
configured regions of interest and load carriers move with the camera. It is the user’s responsibility
to update the configured poses if the camera frame moves (e.g. with a robot-mounted camera).

Roboception GmbH
Manual: rc_visard_ng

76 Rev: 26.01.3
Status: Jan 30, 2026

https://doc.rc-visard.com/latest/en/hardware_spec.html#sect-coordinate-frames

6.2. Detection & Measure modules

2. External frame (external). All poses provided by the modules are in the external frame, con-
figured by the user during the hand-eye calibration process. The module relies on the on-
board Hand-eye calibration module (Section 6.3.1) to retrieve the sensor mounting (static or robot
mounted) and the hand-eye transformation. If the mounting is static, no further information is
needed. If the sensor is robot-mounted, the robot_pose is required to transform poses to and
from the external frame.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

All pose_frame values that are not camera or external are rejected.

If the sensor is robot-mounted, the current robot_pose has to be provided depending on the value of
pose_frame and the definition of the sorting direction or sorting point:

• If pose_frame is set to external, providing the robot pose is obligatory.

• If the sorting direction is defined in external, providing the robot pose is obligatory.

• If the distance-to-point sorting strategy is defined in external, providing the robot pose is obliga-
tory.

• In all other cases, providing the robot pose is optional.

LoadCarrier

The ItemPick module uses the load carrier detection functionality provided by the LoadCarrier module
(rc_load_carrier, Section 6.2.2), with the run-time parameters specified for this module. However,
only one load carrier will be returned and used in case multiple matching load carriers could be found
in the scene. In case multiple load carriers of the same type are visible, a 3D region of interest should
be set to ensure that always the same load carrier is used for the ItemPick module.

CollisionCheck

Collision checking can be easily enabled for grasp computation of the ItemPick module by pass-
ing the ID of the used gripper and optionally a pre-grasp offset to the compute_grasps or
compute_grasps_extended service call. The gripper has to be defined in the GripperDB module (see
Setting a gripper , Section 6.4.3.2) and details about collision checking are given in Collision checking
within other modules (Section 6.3.2.2).

If collision checking is enabled, only grasps which are collision free will be returned. However, the
visualization images on the ItemPick page of the Web GUI also show colliding grasp points as black
ellipses.

The CollisionCheck module’s run-time parameters affect the collision detection as described in Colli-
sionCheck Parameters (Section 6.3.2.3).

6.2.4.5 Parameters

ItemPick is represented by the rc_itempick node in the REST-API and are reached in the Web
GUI (Section 7.1) under Modules → ItemPick. The user can explore and configure the rc_itempick
module’s run-time parameters, e.g. for development and testing, using the Web GUI or the REST-API
interface
:(Section 7.2).

The user can explore and configure the rc_itempick module’s run-time parameters, e.g. for develop-
ment and testing, using the Web GUI or the REST-API interface (Section 7.2).

Roboception GmbH
Manual: rc_visard_ng

77 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Parameter overview

This module offers the following run-time parameters:

Table 6.16: The rc_itempick module’s run-time parameters
Name Type Min Max Default Description
allow_any_grasp_pose bool false true false Whether the grasps are allowed to

be placed anywhere on the objects
where planar surfaces are detected

allow_any_grasp_z_-
rotation

bool false true false Whether the grasps are allowed to
have arbitrary rotation instead be-
ing aligned with the major axis of the
graspable ellipse

check_collisions_with_-
point_cloud

bool false true false Whether to check for collisions be-
tween gripper and the point cloud

cluster_max_curvature float64 0.005 0.5 0.11 Maximum curvature allowed within
one cluster. The smaller this value,
the more clusters will be split apart.

cluster_max_dimension float64 0.05 2.0 0.3 Maximum allowed diameter for a
cluster in meters. Clusters with a di-
ameter larger than this value are not
used for grasp computation.

clustering_discontinuity_-
factor

float64 0.1 5.0 1.0 Factor used to discriminate depth
discontinuities within a patch. The
smaller this value, the more clusters
will be split apart.

clustering_max_surface_-
rmse

float64 0.0005 0.01 0.004 Maximum root-mean-square error
(RMSE) in meters of points belong-
ing to a surface

clustering_patch_size int32 3 10 4 Size in pixels of the square patches
the depth map is subdivided into
during the first clustering step

grasp_filter_orientation_-
threshold

float64 0.0 180.0 45.0 Maximum allowed orientation
change between grasp and pre-
ferred orientation in degrees

max_grasps int32 1 100 5 Maximum number of provided
grasps

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s ItemPick page. The name in the
Web GUI is given in brackets behind the parameter name and the parameters are listed in the order
they appear in the Web GUI:

max_grasps (Maximum Grasps)

sets the maximum number of provided grasps.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_itempick/parameters/parameters?max_

→˓grasps=<value>

API version 1 (deprecated)

Roboception GmbH
Manual: rc_visard_ng

78 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?max_grasps=<value>

cluster_max_dimension (Cluster Maximum Dimension)

is the maximum allowed diameter for a cluster in meters. Clusters with a diameter
larger than this value are not used for grasp computation.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_itempick/parameters/parameters?cluster_

→˓max_dimension=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?cluster_max_dimension=<value>

cluster_max_curvature (Cluster Maximum Curvature)

is the maximum curvature allowed within one cluster. The smaller this value, the
more clusters will be split apart.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_itempick/parameters/parameters?cluster_

→˓max_curvature=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?cluster_max_curvature=<value>

clustering_patch_size (Patch Size)

is the size of the square patches the depth map is subdivided into during the first
clustering step in pixels.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_itempick/parameters/parameters?
→˓clustering_patch_size=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?clustering_patch_size=<value>

clustering_discontinuity_factor (Discontinuity Factor)

is the factor used to discriminate depth discontinuities within a patch. The smaller
this value, the more clusters will be split apart.

Via the REST-API, this parameter can be set as follows.

API version 2

Roboception GmbH
Manual: rc_visard_ng

79 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

PUT http://<host>/api/v2/pipelines/0/nodes/rc_itempick/parameters/parameters?
→˓clustering_discontinuity_factor=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?clustering_discontinuity_factor=
→˓<value>

clustering_max_surface_rmse (Maximum Surface RMSE)

is the maximum root-mean-square error (RMSE) in meters of points belonging to
a surface.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_itempick/parameters/parameters?
→˓clustering_max_surface_rmse=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?clustering_max_surface_rmse=
→˓<value>

grasp_filter_orientation_threshold (Grasp Orientation Threshold)

is the maximum deviation of the TCP’s z axis at the grasp point from the z axis of
the TCP’s preferred orientation in degrees. Only grasp points which are within this
threshold are returned. When set to zero, any deviations are valid.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?grasp_filter_

→˓orientation_threshold=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?grasp_filter_orientation_

→˓threshold=<value>

allow_any_grasp_z_rotation (Allow Any Grasp Z Rotation)

If set to true, the returned grasps are no longer forced to have their x axes
aligned with the maximum elongation of the graspable ellipse, but can have
any rotation around the z axis. The returned max_suction_surface_length and
max_suction_surface_width will be equal and correspond to the shortest diame-
ter of the largest graspable ellipse. This parameter enables the robot to get more
options for grasping objects, especially in scenes where collisions can occur. How-
ever, in case of UNKNOWN item models, since the grasp is no longer aligned with the
graspable ellipse, the correct orientation for placing the object must be determined
by other means.

Via the REST-API, this parameter can be set as follows.

API version 2

Roboception GmbH
Manual: rc_visard_ng

80 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?allow_any_

→˓grasp_z_rotation=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?allow_any_grasp_z_rotation=
→˓<value>

check_collisions_with_point_cloud (Check Collisions with Point Cloud)

This parameter is only used when collision checking is enabled by passing
a gripper to the compute_grasps or compute_grasps_extended service call. If
check_collisions_with_point_cloud is set to true, all grasp points will be
checked for collisions between the gripper and a watertight version of the point
cloud, and only grasp points at which the gripper would not collide with this point
cloud will be returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_itempick/parameters?check_

→˓collisions_with_point_cloud=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?check_collisions_with_point_

→˓cloud=<value>

6.2.4.6 Status values

The rc_itempick node reports the following status values:

Table 6.17: The rc_itempick node’s status values
Name Description
data_acquisition_time Time in seconds required by the last active service to acquire

images
grasp_computation_time Processing time of the last grasp computation in seconds
last_timestamp_processed The timestamp of the last processed dataset
load_carrier_detection_time Processing time of the last load carrier detection in seconds
processing_time Processing time of the last detection (including load carrier

detection) in seconds
state The current state of the rc_itempick node

The reported state can take one of the following values.

Table 6.18: Possible states of the ItemPick module
State name Description
IDLE The module is idle.
RUNNING The module is running and ready for load carrier detection and grasp computation.
FATAL A fatal error has occurred.

Roboception GmbH
Manual: rc_visard_ng

81 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

6.2.4.7 Services

The user can explore and call the rc_itempick node’s services, e.g. for development and testing, using
the REST-API interface (Section 7.2) or the rc_visard NG Web GUI (Section 7.1).

The ItemPick module offers the following services.

compute_grasps

Triggers the computation of grasping poses for a suction device as described in Computation
of grasps (Section 6.2.4.2).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_itempick/services/compute_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/services/compute_grasps

Request

Required arguments:

pose_frame: see Hand-eye calibration (Section 6.2.4.4).

suction_surface_length: length of the suction device grasping surface.

suction_surface_width: width of the suction device grasping surface.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.2.4.4).

Optional arguments:

load_carrier_id: ID of the load carrier which contains the items to be grasped.

load_carrier_compartment: compartment inside the load carrier where to com-
pute grasps (see Load carrier compartments, Section 6.4.1.3).

region_of_interest_id: if load_carrier_id is set, ID of the 3D region of interest
where to search for the load carriers. Otherwise, ID of the 3D region of interest
where to compute grasps.

item_models: list of items to be detected. In case of ItemPick, currently only a
single item model of type UNKNOWN with minimum and maximum dimensions is
supported, with the minimum dimensions strictly smaller than the maximum di-
mensions.

collision_detection: see Collision checking within other modules (Section
6.3.2.2).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

82 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"z": "float64"
}

},
"item_models": [
{

"type": "string",
"unknown": {
"max_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
],
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"suction_surface_length": "float64",
"suction_surface_width": "float64"

}
}

Response

Roboception GmbH
Manual: rc_visard_ng

83 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

load_carriers: list of detected load carriers.

grasps: sorted list of suction grasps.

items: sorted list of items corresponding to the returned grasps. In case of ItemPick, this list
is always empty.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "compute_grasps",
"response": {
"grasps": [

{
"item_uuid": "string",
"max_suction_surface_length": "float64",
"max_suction_surface_width": "float64",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"quality": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"items": [
{

"bounding_box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"grasp_uuids": [

"string"
],
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

84 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"z": "float64"
}

},
"pose_frame": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

85 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

}
}

compute_grasps_extended

Triggers the computation of grasping poses for a suction device in the same way as
compute_grasps, but returns the item information for each grasp directly instead of as a
separate list. This allows for easier parsing when item information is required for the grasps.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_itempick/services/compute_grasps_extended

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/services/compute_grasps_extended

Request

See compute_grasps service.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"item_models": [
{

"type": "string",
"unknown": {
"max_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
],
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

86 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"suction_surface_length": "float64",
"suction_surface_width": "float64"

}
}

Response

load_carriers: list of detected load carriers.

grasps: sorted list of suction grasps. Each grasp also contains the item information, if
available.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "compute_grasps_extended",
"response": {

"grasps": [
{

"item": {
"bounding_box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

87 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"z": "float64"
},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"type": "string",
"uuid": "string"

},
"max_suction_surface_length": "float64",
"max_suction_surface_width": "float64",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"quality": "float64",
"timestamp": {
"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

88 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

set_preferred_orientation

Persistently stores the preferred orientation of the TCP to compute the reachability of the
grasps, which is used for filtering and the grasps returned by the compute_grasps and
compute_grasps_extended service (see Setting the preferred orientation of the TCP, Section
6.2.4.3).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_itempick/services/set_preferred_

→˓orientation

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/services/set_preferred_orientation

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

89 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"pose_frame": "string"
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_preferred_orientation",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_preferred_orientation

Returns the preferred orientation of the TCP to compute the reachability of the
grasps, which is used for filtering the grasps returned by the compute_grasps and
compute_grasps_extended service (see Setting the preferred orientation of the TCP, Section
6.2.4.3).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_itempick/services/get_preferred_

→˓orientation

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/services/get_preferred_orientation

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_preferred_orientation",
"response": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH
Manual: rc_visard_ng

90 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

set_sorting_strategies

Persistently stores the sorting strategy for sorting the grasps returned by the compute_grasps
and compute_grasps_extended service (see Computation of grasps, Section 6.2.4.2).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_itempick/services/set_sorting_strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/services/set_sorting_strategies

Request

Only one strategy may have a weight greater than 0. If all weight values are set to 0, the
module will use the default sorting strategy.

If the weight for direction is set, the vector must contain the direction vector and
pose_frame must be either camera or external.

If the weight for distance_to_point is set, point must contain the sorting point and
pose_frame must be either camera or external.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"direction": {
"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"weight": "float64"

},
"gravity": {
"weight": "float64"

},
"surface_area": {
"weight": "float64"

}
}

}

Response

The definition for the response with corresponding datatypes is:

Roboception GmbH
Manual: rc_visard_ng

91 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

{
"name": "set_sorting_strategies",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_sorting_strategies

Returns the sorting strategy for sorting the grasps returned by the compute-grasps service
(see Computation of grasps, Section 6.2.4.2).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_itempick/services/get_sorting_strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/services/get_sorting_strategies

Request

This service has no arguments.

Response

All weight values are 0 when the module uses the default sorting strategy.

The definition for the response with corresponding datatypes is:

{
"name": "get_sorting_strategies",
"response": {
"direction": {

"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"weight": "float64"

},
"gravity": {
"weight": "float64"

},

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

92 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"return_code": {
"message": "string",
"value": "int16"

},
"surface_area": {
"weight": "float64"

}
}

}

start

Starts the module. If the command is accepted, the module moves to state RUNNING.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_itempick/services/start

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/services/start

Request

This service has no arguments.

Response

The current_state value in the service response may differ from RUNNING if the state tran-
sition is still in process when the service returns.

The definition for the response with corresponding datatypes is:

{
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

stop

Stops the module. If the command is accepted, the module moves to state IDLE.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_itempick/services/stop

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/services/stop

Roboception GmbH
Manual: rc_visard_ng

93 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Request

This service has no arguments.

Response

The current_state value in the service response may differ from IDLE if the state transition
is still in process when the service returns.

The definition for the response with corresponding datatypes is:

{
"name": "stop",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

reset_defaults

Resets all parameters of the module to its default values, as listed in above table. Also resets
sorting strategies.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_itempick/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.2.4.8 Return codes

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate
that the service failed. Positive return_code values indicate that the service succeeded with additional
information. The smaller value is selected in case a service has multiple return_code values, but all
messages are appended in the return_code message.

The following table contains a list of common codes:

Roboception GmbH
Manual: rc_visard_ng

94 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Table 6.19: Return codes of the ItemPick services
Code Description

0 Success
-1 An invalid argument was provided
-3 An internal timeout occurred, e.g. during box detection if the given dimension range is too

large
-4 Data acquisition took longer than allowed
-8 The template has been deleted during detection

-10 New element could not be added as the maximum storage capacity of load carriers, regions
of interest or template has been exceeded

-11 Sensor not connected, not supported or not ready
-12 Resource busy, e.g. when trigger_dump is called too frequently
-200 Fatal internal error
-301 More than one item model provided to the compute_grasps or compute_grasps_extended

service
10 The maximum storage capacity of load carriers, regions of interest or templates has been

reached
11 An existent persistent model was overwritten by the call to set_load_carrier or

set_region_of_interest

100 The requested load carriers were not detected in the scene
101 No valid surfaces or grasps were found in the scene
102 The detected load carrier is empty
103 All computed grasps are in collision
112 Rejected detections of one or more clusters, because min_cluster_coverage was not

reached
300 A valid robot_pose was provided as argument but it is not required
999 Additional hints for application development

6.2.5 BoxPick

6.2.5.1 Introduction

The BoxPick module provides an out-of-the-box perception solution for robotic pick-and-place applica-
tions. It detects rectangular surfaces and determines their position, orientation and size for grasping.
With the +Match extension, BoxPick can be used to detect textured rectangles with consistent orienta-
tions, such as printed product packaging, labels, brochures or books.

In addition, the module offers:

• A dedicated page on the rc_visard NG Web GUI (Section 7.1) for easy setup, configuration, test-
ing, and application tuning.

• The definition of regions of interest to select relevant volumes in the scene (see RoiDB, Section
6.4.2).

• A load carrier detection functionality for bin-picking applications (see LoadCarrier , Section 6.2.2),
to provide grasps for items inside a bin only.

• The definition of compartments inside a load carrier to provide grasps for specific volumes of the
bin only.

• Collision checking between the gripper and the load carrier and/or the point cloud.

• Support for static and robot-mounted cameras and optional integration with the Hand-eye calibra-
tion (Section 6.3.1) module, to provide grasps in the user-configured external reference frame.

• A quality value associated to each suggested grasp and related to the flatness of the grasping
surface.

• Selection of a sorting strategy to sort the returned grasps.

Roboception GmbH
Manual: rc_visard_ng

95 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

• 3D visualization of the detection results with grasp points and gripper animations in the Web GUI.

Note: In this chapter, cluster and surface are used as synonyms and identify a set of points (or
pixels) with defined geometrical properties.

The module is an optional on-board module of the rc_visard NG and requires a separate BoxPick license
(Section 9.4) to be purchased. The +Match extension requires an extra license.

6.2.5.2 Detection of items

There are two different types of models for the rectangles to be detected by the BoxPick module.

Per default, BoxPick only supports item_models of type RECTANGLE. With the +Match extension, also
item models of type TEXTURED_BOX can be detected. The detection of the different item model types is
described below.

Optionally, further information can be given to the BoxPick module:

• The ID of the load carrier which contains the items to be detected.

• A compartment inside the load carrier where to detect items.

• The ID of the region of interest where to search for the load carriers if a load carrier is set. Other-
wise, the ID of the region of interest where to search for the items.

• The current robot pose in case the camera is mounted on the robot and the chosen coordinate
frame for the poses is external or the chosen region of interest is defined in the external frame.

The returned pose of a detected item is the pose of the center of the detected rectangle in the desired
reference frame (pose_frame), with its z axis pointing towards the camera and the x axis aligned with the
long side of the item. This pose has a 180° rotation ambiguity around the z axis, which can be resolved
by using the +Match extension with a TEXTURED_BOX item model. Each detected item includes a uuid
(Universally Unique Identifier) and the timestamp of the oldest image that was used to detect it.

Detection of items of type RECTANGLE

BoxPick supports multiple item_models of type RECTANGLE. Each item model is defined by its minimum
and maximum size, with the minimum dimensions strictly smaller than the maximum dimensions. The
dimensions should be given fairly accurately to avoid misdetections, while still considering a certain
tolerance to account for possible production variations and measurement inaccuracies.

The detection of the rectangles runs in several steps. First, the point cloud is segmented into preferably
plane clusters. Then, straight line segments are detected in the 2D images and projected onto the
corresponding clusters. The clusters and the detected lines are visualized in the “Intermediate Result”
visualization on the Web GUI’s BoxPick page. Finally, for each cluster, the set of rectangles best fitting
to the detected line segments is extracted.

Detection of items of type TEXTURED_BOX (BoxPick+Match)

With the +Match extension, BoxPick additionally supports item_models of type TEXTURED_BOX. When
this item model type is used, only one item model can be given for each request.

The TEXTURED_BOX item model type should be used to detect multiple rectangles that have the same
texture, i.e. the same look or print, such as printed product packaging, labels, brochures or books. It
is required that for all objects the texture is at the same position with respect to the object geometry.
Furthermore, the texture should not be repetitive.

A TEXTURED_BOX item is defined by the item’s exact dimensions x, y and z (only z is allowed to be
0) with a tolerance dimensions_tolerance_m that indicates, how much the detected dimensions are

Roboception GmbH
Manual: rc_visard_ng

96 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

allowed to deviate from the given dimensions. By default, a tolerance of 0.01 m is assumed. Fur-
thermore, a template_id must be given, which will be used to refer to the specified dimensions and
the textures of the detected rectangles. Additionally, the maximum possible deformation of the items
max_deformation_m can be given in meters (default 0.004 m), to account for rigid or more flexible ob-
jects.

If a template_id is used for the first time, BoxPick will run the detection of rectangles as for the item
model type RECTANGLE, and use the given dimensions and tolerance to specify the dimensions range.
If the z dimension is given in addition to x and y, rectangles with all possible combinations of the three
dimensions will be detected. From the detected rectangles, so-called views are created, which contain
the shape and the image intensity values of the rectangles, and are stored in a newly created template
with the given template_id. The views are created iteratively: Starting from the detected rectangle with
the highest score, a view is created and then used to detect more rectangles with the same texture.
Then, all remaining clusters are used to detect further rectangles by the given dimensions range and
again a view is created from the best rectangle and used for further detections. Each template can store
up to 10 different views, for example corresponding to different types of the same product packaging.
Each view will be assigned a unique ID (view_uuid) and all rectangle items with a matching texture
will be assigned the same view_uuid. That also means that all items with the same view_uuid will
have consistent orientations, because the orientation of each item is aligned with its texture. The views
can be displayed, deleted and the orientation of each view can be set via the Web GUI (Section 7.1)
by clicking on the template or its edit symbol in the template list. Each detected item contains a field
view_pose_set indicating whether the orientation of the item’s view was explicitly set or is still unset at
its original random state, which has a 180° ambiguity. Additionally, a user-defined name can be set for
each view, that is returned along with the view_uuid for all items and allows an easier identification of a
specific view. The type of a returned item with a view_uuid will be TEXTURED_RECTANGLE.

If the template with the given template_id already exists, the existing views will be used to detect
rectangles based on their texture. If additional rectangles are found with matching dimensions, but
different texture, new views will be generated and added to the template. When the maximum number
of views is reached, views that are matched only rarely will be deleted so that newly generated views can
be added to the template and the template is kept up-to-date. To prevent a template from being updated,
automatic view updating can be disabled and enabled for each template in the Web GUI by clicking
on the template or the edit symbol in the template list. The dimension tolerance and the maximum
deformation can also be changed there for each template. The maximum deformation determines
the tolerance for the texture matching, representing possible shifts within the texture, e.g. caused by
deformations of the object surface. For rigid objects the max_deformation_m should be set to a low value
in meters to ensure accurate matching.

The template’s dimensions can only be specified when creating a new template. Once the template is
generated, the dimensions cannot be changed and do not need to be given in the detect request. If
the dimensions are still given in the request, they must match the existing dimensions in the template.
However, the dimensions_tolerance_m and max_deformation_m can be set differently in every detect
request and their values will also be updated in the stored template.

6.2.5.3 Computation of grasps

The BoxPick module offers a service for computing grasps for suction grippers. The gripper is defined
by its suction surface length and width.

The grasps are computed on the detected rectangular items (see Detection of items, Section 6.2.5.2).

Optionally, further information can be given to the module in a grasp computation request:

• The ID of the load carrier which contains the items to be grasped.

• A compartment inside the load carrier where to compute grasps (see Load carrier compartments,
Section 6.4.1.3).

• The ID of the 3D region of interest where to search for the load carriers if a load carrier is set.
Otherwise, the ID of the 3D region of interest where to compute grasps.

Roboception GmbH
Manual: rc_visard_ng

97 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

• Collision detection information: The ID of the gripper to enable collision checking and optionally
a pre-grasp offset to define a pre-grasp position. Details on collision checking are given below in
CollisionCheck (Section 6.2.5.5).

A grasp provided by the BoxPick module represents the recommended pose of the TCP (Tool Center
Point) of the suction gripper. The grasp type is always set to SUCTION. The computed grasp pose
is the center of the biggest ellipse that can be inscribed in each surface. The grasp orientation is a
right-handed coordinate system and is defined such that its z axis is normal to the surface pointing
inside the object at the grasp position and its x axis is directed along the maximum elongation of the
ellipse. Since the x axis can have two possible directions, the one that better fits to the preferred TCP
orientation (see Setting the preferred orientation of the TCP, Section 6.2.5.4) is selected. If the run-time
parameter allow_any_grasp_z_rotation is set to true, the x axis will not be forced to be aligned with
the maximum elongation of the graspable ellipse, but can have any rotation around the z axis. In this
case, the returned grasp will have the orientation that best fits to the preferred TCP orientation and is
collision free, if collision checking is enabled.

Fig. 6.11: Illustration of a suction grasp with coordinate system and ellipse representing the maximum
suction surface

Each grasp includes the dimensions of the maximum suction surface available, modelled as an el-
lipse of axes max_suction_surface_length and max_suction_surface_width. The user is enabled
to filter grasps by specifying the minimum suction surface required by the suction device in use. If
the run-time parameter allow_any_grasp_z_rotation is set to true, max_suction_surface_length and
max_suction_surface_width will be equal and correspond to the shortest axis of the largest graspable
ellipse.

In the BoxPick module, the grasp position corresponds to the center of the detected rectangle. When
BoxPick is called with item models of type RECTANGLE, the dimensions of the maximum suction surface
available matches the estimated rectangle dimensions. In this case, detected rectangles with missing
data or occlusions by other objects for more than 15% of their surface do not get an associated grasp.

When BoxPick is called with item models of type TEXTURED_BOX, grasps can also be computed on partly
occluded boxes. The maximum suction surface available matches the free surface that is not occluded
by other clusters.

Each grasp also includes a quality value, which gives an indication of the flatness of the grasping
surface. The quality value varies between 0 and 1, where higher numbers correspond to a flatter
reconstructed surface.

The grasp definition is complemented by a uuid (Universally Unique Identifier) and the timestamp of the
oldest image that was used to compute the grasp.

Grasp sorting is performed based on the selected sorting strategy. The following sorting strategies are
available and can be set in the Web GUI (Section 7.1) or using the set_sorting_strategies service
call:

• gravity: highest grasp points along the gravity direction are returned first,

• surface_area: grasp points with the largest surface area are returned first,

Roboception GmbH
Manual: rc_visard_ng

98 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

• direction: grasp points with the shortest distance along a defined direction vector in a given
pose_frame are returned first.

• distance_to_point: grasp points with the shortest or farthest (if farthest_first is true) distance
from a point in a given pose_frame are returned first.

If no sorting strategy is set or default sorting is chosen in the Web GUI, sorting is done based on a
combination of gravity and surface_area.

6.2.5.4 Setting the preferred orientation of the TCP

The BoxPick module determines the reachability of grasp points based on the preferred orientation of
the TCP. The preferred orientation can be set via the set_preferred_orientation service or on the
BoxPick page in the Web GUI. The resulting direction of the TCP’s z axis is used to reject grasps which
cannot be reached by the gripper. Furthermore, the preferred orientation is used to select one grasp of
several possible symmetries that is best reachable for the robot.

The preferred orientation can be set in the camera coordinate frame or in the external coordinate frame,
in case a hand-eye calibration is available. If the preferred orientation is specified in the external coor-
dinate frame and the sensor is robot mounted, the current robot pose has to be given to each object
detection call. If no preferred orientation is set, the orientation of the left camera (see Coordinate frames
) will be used as the preferred orientation of the TCP.used.

6.2.5.5 Interaction with other modules

Internally, the BoxPick module depends on, and interacts with other on-board modules as listed below.

Note: All changes and configuration updates to these modules will affect the performance of the
BoxPick module.

Camera and depth data

The BoxPick module makes internally use of the following data:

• Rectified images from the Camera module (rc_camera, Section 6.1)

• Disparity, error, and confidence images from the stereo_matching (rc_stereomatching, Section
??)

All processed images are guaranteed to be captured after the module trigger time.

IO and Projector Control

In case the rc_visard NG is used in conjunction with an external random dot projector and the IO and
Projector Control module (rc_iocontrol, Section 6.3.4), it is recommended to connect the projector
to GPIO Out 1 and set the stereo-camera module’s acquisition mode to SingleFrameOut1 (see Stereo
matching parameters, Section ??), so that on each image acquisition trigger an image with and without
projector pattern is acquired.

Alternatively, the output mode for the GPIO output in use should be set to ExposureAlternateActive
(see Description of run-time parameters, Section 6.3.4.1).

In either case, the Auto Exposure Mode exp_auto_mode should be set to AdaptiveOut1 to optimize the
exposure of both images.

Roboception GmbH
Manual: rc_visard_ng

99 Rev: 26.01.3
Status: Jan 30, 2026

https://doc.rc-visard.com/latest/en/hardware_spec.html#sect-coordinate-frames

6.2. Detection & Measure modules

Hand-eye calibration

In case the camera has been calibrated to a robot, the BoxPick module can automatically provide poses
in the robot coordinate frame. For the BoxPick node’s Services (Section 6.2.5.8), the frame of the output
poses can be controlled with the pose_frame argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses provided by the modules are in the camera frame, and no
prior knowledge about the pose of the camera in the environment is required. This means that the
configured regions of interest and load carriers move with the camera. It is the user’s responsibility
to update the configured poses if the camera frame moves (e.g. with a robot-mounted camera).

2. External frame (external). All poses provided by the modules are in the external frame, con-
figured by the user during the hand-eye calibration process. The module relies on the on-
board Hand-eye calibration module (Section 6.3.1) to retrieve the sensor mounting (static or robot
mounted) and the hand-eye transformation. If the mounting is static, no further information is
needed. If the sensor is robot-mounted, the robot_pose is required to transform poses to and
from the external frame.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

All pose_frame values that are not camera or external are rejected.

If the sensor is robot-mounted, the current robot_pose has to be provided depending on the value of
pose_frame and the definition of the sorting direction or sorting point:

• If pose_frame is set to external, providing the robot pose is obligatory.

• If the sorting direction is defined in external, providing the robot pose is obligatory.

• If the distance-to-point sorting strategy is defined in external, providing the robot pose is obliga-
tory.

• In all other cases, providing the robot pose is optional.

LoadCarrier

The BoxPick module uses the load carrier detection functionality provided by the LoadCarrier module
(rc_load_carrier, Section 6.2.2), with the run-time parameters specified for this module. However,
only one load carrier will be returned and used in case multiple matching load carriers could be found
in the scene. In case multiple load carriers of the same type are visible, a 3D region of interest should
be set to ensure that always the same load carrier is used for the BoxPick module.

The load carrier is used to filter false detections when BoxPick is triggered with an item model of type
TEXTURED_BOX and all three dimensions x, y, z are given. In this case, 3D boxes are created internally by
adding the missing dimensions to the detected rectangles and only detections corresponding to boxes
which are fully inside the detected load carrier are returned.

CollisionCheck

Collision checking can be easily enabled for grasp computation of the BoxPick module by pass-
ing the ID of the used gripper and optionally a pre-grasp offset to the compute_grasps or
compute_grasps_extended service call. The gripper has to be defined in the GripperDB module (see
Setting a gripper , Section 6.4.3.2) and details about collision checking are given in Collision checking
within other modules (Section 6.3.2.2).

If collision checking is enabled, only grasps which are collision free will be returned. However, the
visualization images on the BoxPick page of the Web GUI also show colliding grasp points as black
ellipses.

Roboception GmbH
Manual: rc_visard_ng

100 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

The CollisionCheck module’s run-time parameters affect the collision detection as described in Colli-
sionCheck Parameters (Section 6.3.2.3).

6.2.5.6 Parameters

The BoxPick module is called rc_boxpick in the REST-API and is represented in the Web GUI (Section
7.1) under Modules → BoxPick. The user can explore and configure the rc_boxpick module’s run-time
parameters, e.g. for development and testing, using the Web GUI or the REST-API interface (Section
7.2).

Parameter overview

This module offers the following run-time parameters:

Table 6.20: The rc_boxpick module’s run-time parameters
Name Type Min Max Default Description
allow_any_grasp_z_-
rotation

bool false true false Whether the grasps are allowed to
have arbitrary rotation instead be-
ing aligned with the major axis of the
graspable ellipse

allow_untextured_-
detections

bool false true false Whether to return also untextured
detections in case a textured box
was given

check_collisions_with_-
point_cloud

bool false true false Whether to check for collisions be-
tween gripper and the point cloud

cluster_max_curvature float64 0.005 0.5 0.11 Maximum curvature allowed within
one cluster. The smaller this value,
the more clusters will be split apart.

clustering_discontinuity_-
factor

float64 0.1 5.0 1.0 Factor used to discriminate depth
discontinuities within a patch. The
smaller this value, the more clusters
will be split apart.

clustering_max_surface_-
rmse

float64 0.0005 0.01 0.004 Maximum root-mean-square error
(RMSE) in meters of points belong-
ing to a surface

grasp_filter_orientation_-
threshold

float64 0.0 180.0 45.0 Maximum allowed orientation
change between grasp and pre-
ferred orientation in degrees

line_sensitivity float64 0.1 1.0 0.1 Sensitivity of the line detector
manual_line_sensitivity bool false true false Indicates whether the user-defined

line sensitivity should be used or the
automatic one

max_grasps int32 1 100 5 Maximum number of provided
grasps

min_cluster_coverage float64 0.0 0.99 0.0 Gives the minimal ratio of points per
cluster that must be covered with
detected items.

mode string - - Unconstrained Mode of the rectangle detection:
[Unconstrained, PackedGridLayout,
PackedLayers]

prefer_splits bool false true false Indicates whether rectangles are
split into smaller ones when possi-
ble

Roboception GmbH
Manual: rc_visard_ng

101 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s BoxPick page. The name in the
Web GUI is given in brackets behind the parameter name and the parameters are listed in the order
they appear in the Web GUI:

max_grasps (Maximum Grasps)

sets the maximum number of provided grasps.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/parameters/parameters?max_grasps=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?max_grasps=<value>

cluster_max_curvature (Cluster Maximum Curvature)

is the maximum curvature allowed within one cluster. The smaller this value, the
more clusters will be split apart.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/parameters/parameters?cluster_

→˓max_curvature=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?cluster_max_curvature=<value>

clustering_discontinuity_factor (Discontinuity Factor)

is the factor used to discriminate depth discontinuities within a patch. The smaller
this value, the more clusters will be split apart.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/parameters/parameters?clustering_

→˓discontinuity_factor=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?clustering_discontinuity_factor=
→˓<value>

Roboception GmbH
Manual: rc_visard_ng

102 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

clustering_max_surface_rmse (Maximum Surface RMSE)

is the maximum root-mean-square error (RMSE) in meters of points belonging to
a surface.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/parameters/parameters?clustering_

→˓max_surface_rmse=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?clustering_max_surface_rmse=
→˓<value>

mode (Mode)

determines the mode of the rectangle detection. Possible values are
Unconstrained, PackedGridLayout and PackedLayers. In PackedGridLayout
mode, rectangles of a cluster are detected in a dense grid pattern. In
PackedLayers mode, boxes are assumed to form layers and box detection will
start searching for items at the cluster corners. Use this mode in de-palletizing ap-
plications. In Unconstrained mode (default), rectangles are detected without pos-
ing any constraints on their relative locations or their positions in the segmented
cluster. Fig. 6.12 illustrates the modes for different scenarios.

Fig. 6.12: Illustration of appropriate BoxPick modes for different scenes. Modes marked with yellow are
applicable but not recommended for the corresponding scene. The gray areas indicate the rectangles
to be detected.

Roboception GmbH
Manual: rc_visard_ng

103 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/parameters/parameters?mode=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?mode=<value>

manual_line_sensitivity (Manual Line Sensitivity)

determines whether the user-defined line sensitivity should be used to extract the
lines for rectangle detection. If this parameter is set to true, the user-defined
line_sensitivity value will be used. If this parameter is set to false, automatic
line sensitivity will be used. This parameter should be set to true when automatic
line sensitivity does not give enough lines at the box boundaries so that boxes can-
not be detected. The detected line segments are visualized in the “Intermediate
Result” visualization on the Web GUI’s BoxPick page.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/parameters/parameters?manual_

→˓line_sensitivity=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?manual_line_sensitivity=<value>

line_sensitivity (Line Sensitivity)

determines the line sensitivity for extracting the lines for rectangle detection, if
the parameter manual_line_sensitivity is set to true. Otherwise, the value of
this parameter has no effect on the rectangle detection. Higher values give more
line segments, but also increase the runtime of the box detection. This parame-
ter should be increased when boxes cannot be detected because their boundary
edges are not detected. The detected line segments are visualized in the “Inter-
mediate Result” visualization on the Web GUI’s BoxPick page.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/parameters/parameters?line_

→˓sensitivity=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?line_sensitivity=<value>

prefer_splits (Prefer Splits)

determines whether rectangles should be split into smaller ones if the smaller ones
also match the given item models. This parameter should be set to true for packed
box layouts in which the given item models would also match a rectangle of the

Roboception GmbH
Manual: rc_visard_ng

104 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

size of two adjoining boxes. If this parameter is set to false, the larger rectangles
will be preferred in these cases.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/parameters/parameters?prefer_

→˓splits=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?prefer_splits=<value>

min_cluster_coverage (Minimum Cluster Coverage)

determines which ratio of each segmented cluster must be covered with rectangle
detections to consider the detections to be valid. If the minimum cluster coverage
is not reached for a cluster, no rectangle detections will be returned for this cluster
and a warning will be given. This parameter should be used to verify that all items
on a layer in a de-palletizing scenario are detected.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/parameters/parameters?min_

→˓cluster_coverage=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?min_cluster_coverage=<value>

allow_untextured_detections (Only for BoxPick+Match, Allow Untextured Detections)

enables returning all rectangles matching the given template dimensions, even
when they cannot be matched to an existing view or when they do not have enough
texture to create a new view from them. This parameter is only used when item
models of type TEXTURED_BOX are detected. Disabling this parameter leads to
faster detections when used with a template for which the automatic view updating
is disabled.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/parameters/parameters?allow_

→˓untextured_detections=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?allow_untextured_detections=
→˓<value>

grasp_filter_orientation_threshold (Grasp Orientation Threshold)

is the maximum deviation of the TCP’s z axis at the grasp point from the z axis of
the TCP’s preferred orientation in degrees. Only grasp points which are within this
threshold are returned. When set to zero, any deviations are valid.

Roboception GmbH
Manual: rc_visard_ng

105 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?grasp_filter_

→˓orientation_threshold=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?grasp_filter_orientation_

→˓threshold=<value>

allow_any_grasp_z_rotation (Allow Any Grasp Z Rotation)

If set to true, the returned grasps are no longer forced to have their x axes
aligned with the maximum elongation of the graspable ellipse, but can have
any rotation around the z axis. The returned max_suction_surface_length and
max_suction_surface_width will be equal and correspond to the shortest diam-
eter of the largest graspable ellipse. This parameter enables the robot to get
more options for grasping objects, especially in scenes where collisions can oc-
cur. However, since the grasp is no longer aligned with the graspable ellipse, the
correct orientation for placing the object must be determined from the correspond-
ing item’s pose.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?allow_any_

→˓grasp_z_rotation=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?allow_any_grasp_z_rotation=<value>

check_collisions_with_point_cloud (Check Collisions with Point Cloud)

This parameter is only used when collision checking is enabled by passing
a gripper to the compute_grasps or compute_grasps_extended service call. If
check_collisions_with_point_cloud is set to true, all grasp points will be
checked for collisions between the gripper and a watertight version of the point
cloud, and only grasp points at which the gripper would not collide with this point
cloud will be returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_boxpick/parameters?check_

→˓collisions_with_point_cloud=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?check_collisions_with_point_cloud=
→˓<value>

Roboception GmbH
Manual: rc_visard_ng

106 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

6.2.5.7 Status values

The rc_boxpick module reports the following status values:

Table 6.21: The rc_boxpick module’s status values
Name Description
data_acquisition_time Time in seconds required by the last active service to acquire

images
grasp_computation_time Processing time of the last grasp computation in seconds
last_timestamp_processed The timestamp of the last processed dataset
load_carrier_detection_time Processing time of the last load carrier detection in seconds
processing_time Processing time of the last detection (including load carrier

detection) in seconds
state The current state of the rc_boxpick node

The reported state can take one of the following values.

Table 6.22: Possible states of the BoxPick module
State name Description
IDLE The module is idle.
RUNNING The module is running and ready for load carrier detection and grasp computation.
FATAL A fatal error has occurred.

6.2.5.8 Services

The user can explore and call the rc_boxpick module’s services, e.g. for development and testing,
using the REST-API interface (Section 7.2) or the rc_visard NG Web GUI (Section 7.1).

The BoxPick module offers the following services.

detect_items

Triggers the detection of rectangles as described in Detection of items (Section 6.2.5.2).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/services/detect_items

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/detect_items

Request

Required arguments:

pose_frame: see Hand-eye calibration (Section 6.2.5.5).

item_models: list of item models to be detected. The type of the item model
must be RECTANGLE or TEXTURED_BOX. For type RECTANGLE, rectangle must be
filled, while for TEXTURED_BOX, textured_box must be filled. See Detection of
items (Section 6.2.5.2) for a detailed description of the item model types.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.2.5.5).

Roboception GmbH
Manual: rc_visard_ng

107 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Optional arguments:

load_carrier_id: ID of the load carrier which contains the items to be detected.

load_carrier_compartment: compartment inside the load carrier where to detect
items (see Load carrier compartments, Section 6.4.1.3).

region_of_interest_id: if load_carrier_id is set, ID of the 3D region of interest
where to search for the load carriers. Otherwise, ID of the 3D region of interest
where to search for the items.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"item_models": [
{

"rectangle": {
"max_dimensions": {
"x": "float64",
"y": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64"

}
},
"textured_box": {
"dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"dimensions_tolerance_m": "float64",
"max_deformation_m": "float64",
"template_id": "string"

},
"type": "string"

}
],
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

108 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

load_carriers: list of detected load carriers.

items: list of detected rectangles.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "detect_items",
"response": {
"items": [

{
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rectangle": {
"x": "float64",
"y": "float64"

},
"template_id": "string",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string",
"view_name": "string",
"view_pose_set": "bool",
"view_uuid": "string"

}
],
"load_carriers": [

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

109 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

compute_grasps

Triggers the detection of rectangles and the computation of grasping poses for the detected
rectangles as described in Computation of grasps (Section 6.2.5.3).

Details

This service can be called as follows.

API version 2

Roboception GmbH
Manual: rc_visard_ng

110 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/services/compute_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/compute_grasps

Request

Required arguments:

pose_frame: see Hand-eye calibration (Section 6.2.5.5).

item_models: list of item models to be detected. The type of the item model
must be RECTANGLE or TEXTURED_BOX. For type RECTANGLE, rectangle must be
filled, while for TEXTURED_BOX, textured_box must be filled. See Detection of
items (Section 6.2.5.2) for a detailed description of the item model types.

suction_surface_length: length of the suction device grasping surface.

suction_surface_width: width of the suction device grasping surface.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.2.5.5).

Optional arguments:

load_carrier_id: ID of the load carrier which contains the items to be grasped.

load_carrier_compartment: compartment inside the load carrier where to com-
pute grasps (see Load carrier compartments, Section 6.4.1.3).

region_of_interest_id: if load_carrier_id is set, ID of the 3D region of interest
where to search for the load carriers. Otherwise, ID of the 3D region of interest
where to compute grasps.

collision_detection: see Collision checking within other modules (Section
6.3.2.2).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"item_models": [
{

"rectangle": {
"max_dimensions": {
"x": "float64",
"y": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64"

}
},
"textured_box": {
"dimensions": {
"x": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

111 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"y": "float64",
"z": "float64"

},
"dimensions_tolerance_m": "float64",
"max_deformation_m": "float64",
"template_id": "string"

},
"type": "string"

}
],
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"suction_surface_length": "float64",
"suction_surface_width": "float64"

}
}

Response

load_carriers: list of detected load carriers.

grasps: sorted list of suction grasps.

items: list of detected rectangles corresponding to the returned grasps.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

Roboception GmbH
Manual: rc_visard_ng

112 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

{
"name": "compute_grasps",
"response": {
"grasps": [

{
"item_uuid": "string",
"max_suction_surface_length": "float64",
"max_suction_surface_width": "float64",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"quality": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"items": [
{

"grasp_uuids": [
"string"

],
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rectangle": {

"x": "float64",
"y": "float64"

},
"template_id": "string",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string",
"view_name": "string",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

113 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"view_pose_set": "bool",
"view_uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {

"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {
"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

compute_grasps_extended

Triggers the detection of rectangles and the computation of grasping poses for for detected
rectangles in the same way as compute_grasps, but returns the item information for each

Roboception GmbH
Manual: rc_visard_ng

114 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

grasp directly instead of as a separate list. This allows for easier parsing when item infor-
mation is required for the grasps.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/services/compute_grasps_extended

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/compute_grasps_extended

Request

See compute_grasps service.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"item_models": [
{

"rectangle": {
"max_dimensions": {
"x": "float64",
"y": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64"

}
},
"textured_box": {
"dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"dimensions_tolerance_m": "float64",
"max_deformation_m": "float64",
"template_id": "string"

},
"type": "string"

}
],
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {
"orientation": {

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

115 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"suction_surface_length": "float64",
"suction_surface_width": "float64"

}
}

Response

load_carriers: list of detected load carriers.

grasps: sorted list of suction grasps. Each grasp also contains the item information of the
corresponding detected rectangle.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "compute_grasps_extended",
"response": {

"grasps": [
{

"item": {
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

116 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

}
},
"pose_frame": "string",
"rectangle": {
"x": "float64",
"y": "float64"

},
"template_id": "string",
"type": "string",
"uuid": "string",
"view_name": "string",
"view_pose_set": "bool",
"view_uuid": "string"

},
"max_suction_surface_length": "float64",
"max_suction_surface_width": "float64",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"quality": "float64",
"timestamp": {
"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

117 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

set_preferred_orientation

Persistently stores the preferred orientation of the TCP to compute the reachability of
the grasps, which is used for filtering and the grasps returned by the compute_grasps or
compute_grasps_extended service (see Setting the preferred orientation of the TCP, Sec-
tion 6.2.5.4).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/services/set_preferred_

→˓orientation

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/set_preferred_orientation

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

118 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"z": "float64"
},
"pose_frame": "string"

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_preferred_orientation",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_preferred_orientation

Returns the preferred orientation of the TCP to compute the reachability of the
grasps, which is used for filtering the grasps returned by the compute_grasps and
compute_grasps_extended service (see Setting the preferred orientation of the TCP, Section
6.2.5.4).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/services/get_preferred_

→˓orientation

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/get_preferred_orientation

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_preferred_orientation",
"response": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"return_code": {
"message": "string",
"value": "int16"

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

119 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

}
}

}

set_sorting_strategies

Persistently stores the sorting strategy for sorting the grasps returned by the compute_grasps
and compute_grasps_extended service (see Computation of grasps, Section 6.2.5.3).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/services/set_sorting_strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/set_sorting_strategies

Request

Only one strategy may have a weight greater than 0. If all weight values are set to 0, the
module will use the default sorting strategy.

If the weight for direction is set, the vector must contain the direction vector and
pose_frame must be either camera or external.

If the weight for distance_to_point is set, point must contain the sorting point and
pose_frame must be either camera or external.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"direction": {
"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"weight": "float64"

},
"gravity": {
"weight": "float64"

},
"surface_area": {
"weight": "float64"

}

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

120 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_sorting_strategies",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_sorting_strategies

Returns the sorting strategy for sorting the grasps returned by the compute-grasps service
(see Computation of grasps, Section 6.2.5.3).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/services/get_sorting_strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/get_sorting_strategies

Request

This service has no arguments.

Response

All weight values are 0 when the module uses the default sorting strategy.

The definition for the response with corresponding datatypes is:

{
"name": "get_sorting_strategies",
"response": {
"direction": {

"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

"x": "float64",
"y": "float64",
"z": "float64"

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

121 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

},
"pose_frame": "string",
"weight": "float64"

},
"gravity": {
"weight": "float64"

},
"return_code": {
"message": "string",
"value": "int16"

},
"surface_area": {
"weight": "float64"

}
}

}

start

Starts the module. If the command is accepted, the module moves to state RUNNING.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/services/start

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/start

Request

This service has no arguments.

Response

The current_state value in the service response may differ from RUNNING if the state tran-
sition is still in process when the service returns.

The definition for the response with corresponding datatypes is:

{
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

stop

Stops the module. If the command is accepted, the module moves to state IDLE.

Details

This service can be called as follows.

API version 2

Roboception GmbH
Manual: rc_visard_ng

122 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/services/stop

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/stop

Request

This service has no arguments.

Response

The current_state value in the service response may differ from IDLE if the state transition
is still in process when the service returns.

The definition for the response with corresponding datatypes is:

{
"name": "stop",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

reset_defaults

Resets all parameters of the module to its default values, as listed in above table. Also resets
sorting strategies.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

Roboception GmbH
Manual: rc_visard_ng

123 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

6.2.5.9 Return codes

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate
that the service failed. Positive return_code values indicate that the service succeeded with additional
information. The smaller value is selected in case a service has multiple return_code values, but all
messages are appended in the return_code message.

The following table contains a list of common codes:

Table 6.23: Return codes of the BoxPick services
Code Description

0 Success
-1 An invalid argument was provided
-3 An internal timeout occurred, e.g. during box detection if the given dimension range is too

large
-4 Data acquisition took longer than allowed
-8 The template has been deleted during detection

-10 New element could not be added as the maximum storage capacity of load carriers, regions
of interest or template has been exceeded

-11 Sensor not connected, not supported or not ready
-12 Resource busy, e.g. when trigger_dump is called too frequently
-200 Fatal internal error
-301 More than one item model provided to the compute_grasps or compute_grasps_extended

service
10 The maximum storage capacity of load carriers, regions of interest or templates has been

reached
11 An existent persistent model was overwritten by the call to set_load_carrier or

set_region_of_interest

100 The requested load carriers were not detected in the scene
101 No valid surfaces or grasps were found in the scene
102 The detected load carrier is empty
103 All computed grasps are in collision
112 Rejected detections of one or more clusters, because min_cluster_coverage was not

reached
300 A valid robot_pose was provided as argument but it is not required
999 Additional hints for application development

6.2.5.10 BoxPick Template API

BoxPick templates are only available with the +Match extension of BoxPick. For template upload, down-
load, listing and removal, special REST-API endpoints are provided. Templates can also be uploaded,
downloaded and removed via the Web GUI. The templates include the dimensions, the views and their
poses, if set. Up to 100 templates can be stored persistently on the rc_visard NG.

GET /templates/rc_boxpick
Get list of all rc_boxpick templates.

Template request

GET /api/v2/templates/rc_boxpick HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

124 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

[
{

"id": "string"
}

]

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of Template)

• 404 Not Found – node not found

Referenced Data Models

• Template (Section 7.2.3)

GET /templates/rc_boxpick/{id}
Get a rc_boxpick template. If the requested content-type is application/octet-stream, the template
is returned as file.

Template request

GET /api/v2/templates/rc_boxpick/<id> HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)

Response Headers

• Content-Type – application/json application/ubjson application/octet-stream

Status Codes

• 200 OK – successful operation (returns Template)

• 404 Not Found – node or template not found

Referenced Data Models

• Template (Section 7.2.3)

PUT /templates/rc_boxpick/{id}
Create or update a rc_boxpick template.

Template request

PUT /api/v2/templates/rc_boxpick/<id> HTTP/1.1
Accept: multipart/form-data application/json

Template response

Roboception GmbH
Manual: rc_visard_ng

125 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.2. Detection & Measure modules

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)

Form Parameters

• file – template file (required)

Request Headers

• Accept – multipart/form-data application/json

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns Template)

• 400 Bad Request – Template is not valid or max number of templates reached

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-
ule.

• 404 Not Found – node or template not found

• 413 Request Entity Too Large – Template too large

Referenced Data Models

• Template (Section 7.2.3)

DELETE /templates/rc_boxpick/{id}
Remove a rc_boxpick template.

Template request

DELETE /api/v2/templates/rc_boxpick/<id> HTTP/1.1
Accept: application/json application/ubjson

Parameters

• id (string) – id of the template (required)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-
ule.

• 404 Not Found – node or template not found

Roboception GmbH
Manual: rc_visard_ng

126 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.2. Detection & Measure modules

6.2.6 SilhouetteMatch

6.2.6.1 Introduction

The SilhouetteMatch module is an optional on-board module of the rc_visard NG and requires a sepa-
rate SilhouetteMatch license (Section 9.4) to be purchased.

The module detects objects by matching a predefined silhouette (“template”) to edges in the image.

The SilhouetteMatch module can detect objects in two different scenarios:

With calibrated base plane: The objects are placed on a common base plane, which must
be calibrated before the detection, and the objects have significant edges on a common
plane that is parallel to the base plane.

With object plane detection: The objects can be placed at different, previously unknown
heights, if the objects have a planar surface and their outer contours are well visible in the
images (e.g. stacked flat objects).

Templates for object detection can be created by uploading a DXF file and specifying the object height.
The correct scale and unit of the contours are extracted from the DXF file. If no units are present in the
DXF file, the user has to specify which units should be used. When the outer contour of the object in the
DXF file is closed, a 3D collision model is created automatically by extruding the contour by the given
object height. This model will then be used for collision checking and in 3D visualizations. Uploading a
DXF file can be done in the Web GUI via the + Create a new Template button in the SilhouetteMatch
Templates and Grasps section on the Modules → SilhouetteMatch or Database → Templates pages.

Roboception also offers a template generation service on their website (https://roboception.com/en/
template-request/), where the user can upload CAD files or recorded data of the objects and request
object templates for the SilhouetteMatch module.

The object templates consist of significant edges of each object. These template edges are matched to
the edges detected in the left and right camera images, considering the actual size of the objects and
their distance from the camera. The poses of the detected objects are returned and can be used for
grasping, for example.

The SilhouetteMatch module offers:

• A dedicated page on the rc_visard NG Web GUI (Section 7.1) for easy setup, configuration, test-
ing, and application tuning.

• A REST-API interface (Section 7.2) and a KUKA Ethernet KRL Interface (Section 7.5).

• The definition of 2D regions of interest to select relevant parts of the camera image (see Setting a
region of interest , Section 6.2.6.3).

• A load carrier detection functionality for bin-picking applications (see LoadCarrier , Section 6.2.2),
to provide grasps for objects inside a bin only.

• Storing of up to 50 templates.

• The definition of up to 50 grasp points for each template via an interactive visualization in the Web
GUI.

• Collision checking between the gripper and the load carrier, the calibrated base plane, other de-
tected objects and/or the point cloud.

• Support for static and robot-mounted cameras and optional integration with the Hand-eye calibra-
tion (Section 6.3.1) module, to provide grasps in the user-configured external reference frame.

• Selection of a sorting strategy to sort the detected objects and returned grasps.

• 3D visualization of the detection results with grasp points and gripper animations in the Web GUI.

Roboception GmbH
Manual: rc_visard_ng

127 Rev: 26.01.3
Status: Jan 30, 2026

https://roboception.com/en/template-request/
https://roboception.com/en/template-request/
https://roboception.com/en/template-request/

6.2. Detection & Measure modules

Suitable objects

The SilhouetteMatch module is intended for objects which have significant edges on a common plane
that is parallel to the plane on which the objects are placed. This applies to flat, nontransparent objects,
such as routed, laser-cut or water-cut 2D parts and flat-machined parts. More complex parts can also
be detected if there are significant edges on a common plane, e.g. a special pattern printed on a flat
surface. The detection works best for objects on a texture-free plane. The color of the base plane
should be chosen such that a clear contrast between the objects and the base plane appears in the
intensity image.

In case the objects are not placed on a common base plane or the base plane cannot be calibrated
beforehand, the objects need to have a planar surface and their outer contour must be well visible in the
left and right images. Furthermore, the template for these objects must have a closed outer contour.

Suitable scene

The scene must meet the following conditions to be suitable for the SilhouetteMatch module:

• The objects to be detected must be suitable for the SilhouetteMatch module as described above.

• Only objects belonging to one specific template are visible at a time (unmixed scenario). In case
other objects are visible as well, a proper region of interest (ROI) must be set.

• In case a calibrated base plane is used: The offset between the base plane normal and the
camera’s line of sight does not exceed 10 degrees.

• In case the object planes are detected automatically: The offset between the object’s planar
surface normal and the camera’s line of sight does not exceed 25 degrees.

• The objects are not partially or fully occluded. .

• All visible objects are right side up (no flipped objects).

• The object edges to be matched are visible in both, left and right camera images.

6.2.6.2 Base-plane calibration

In case all objects are placed on a common plane that is known beforehand, a base-plane calibration
should be performed before triggering a detection. Thereby, the distance and angle of the plane on
which the objects are placed is measured and stored persistently on the rc_visard NG.

Separating the detection of the base plane from the actual object detection renders scenarios possible
in which the base plane is temporarily occluded. Moreover, it increases performance of the object
detection for scenarios where the base plane is fixed for a certain time; thus, it is not necessary to
continuously re-detect the base plane.

The base-plane calibration can be performed in three different ways, which will be explained in more
detail further down:

• AprilTag based

• Stereo based

• Manual

The base-plane calibration is successful if the normal vector of the estimated base plane is at most 10
degrees offset to the camera’s line of sight. If the base-plane calibration is successful, it will be stored
persistently on the rc_visard NG until it is removed or a new base-plane calibration is performed.

Note: To avoid privacy issues, the image of the persistently stored base-plane calibration will appear
blurred after rebooting the rc_visard NG.

Roboception GmbH
Manual: rc_visard_ng

128 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

In scenarios where the base plane is not accessible for calibration, a plane parallel to the base plane
can be calibrated. Then an offset parameter can be used to shift the estimated plane onto the actual
base plane where the objects are placed. The offset parameter gives the distance in meters by which
the estimated plane is shifted towards the camera.

In the REST-API, a plane is defined by a normal and a distance. normal is a normalized 3-vector,
specifying the normal of the plane. The normal points away from the camera. distance represents the
distance of the plane from the camera along the normal. Normal and distance can also be interpreted
as 𝑎, 𝑏, 𝑐, and 𝑑 components of the plane equation, respectively:

𝑎𝑥+ 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0

AprilTag based base-plane calibration

AprilTag detection (ref. TagDetect , Section 6.2.3) is used to find AprilTags in the scene and fit a plane
through them. At least three AprilTags must be placed on the base plane so that they are visible in the
left and right camera images. The tags should be placed such that they are spanning a triangle that is
as large as possible. The larger the triangle, the more accurate is the resulting base-plane estimate.
Use this method if the base plane is untextured and no external random dot projector is available. This
calibration mode is available via the REST-API interface (Section 7.2) and the rc_visard NG Web GUI.

Stereo based base-plane calibration

The 3D point cloud computed by the stereo matching module is used to fit a plane through its 3D points.
Therefore, the region of interest (ROI) for this method must be set such that only the relevant base
plane is included. The plane_preference parameter allows to select whether the plane closest to or
farthest from the camera should be used as base plane. Selecting the closest plane can be used in
scenarios where the base plane is completely occluded by objects or not accessible for calibration. Use
this method if the base plane is well textured or you can make use of a random dot projector to project
texture on the base plane. This calibration mode is available via the REST-API interface (Section 7.2)
and the rc_visard NG Web GUI.

Manual base-plane calibration

The base plane can be set manually if its parameters are known, e.g. from previous calibrations. This
calibration mode is only available via the REST-API interface (Section 7.2) and not the rc_visard NG
Web GUI.

6.2.6.3 Setting a region of interest

If objects are to be detected only in part of the camera’s field of view, a 2D region of interest (ROI) can
be set accordingly as described in Region of interest (Section 6.4.2.2).

6.2.6.4 Setting of grasp points

To use SilhouetteMatch directly in a robot application, up to 50 grasp points can be defined for each
template. A grasp point represents the desired position and orientation of the robot’s TCP (Tool Center
Point) to grasp an object as shown in Fig. 6.13.

Roboception GmbH
Manual: rc_visard_ng

129 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

y

z

x
PgraspTCP y

z

x

Fig. 6.13: Definition of grasp points with respect to the robot’s TCP

Each grasp consists of an id which must be unique within all grasps for an object template, the
template_id representing the template to which the grasp should be attached, and the pose in the
coordinate frame of the object template. Grasp points can be set via the REST-API interface (Section
7.2), or by using the interactive visualization in the Web GUI. Furthermore, a priority (spanning -2
for very low to 2 for very high) can be assigned to a grasp. Priorities can facilitate robot applications
and shorten response times when the run-time parameter only_highest_priority_grasps is set to
true. In this case collision checking concludes when grasps with the highest possible priority have been
found. Finally, different grasps can be associated with different grippers by specifying a gripper_id.
These individual grippers are then used for collision checking of the corresponding grasps instead of
the gripper defined in the detect_object or detect_object_extended request. If no gripper_id is
given, the gripper defined in the detect_object or detect_object_extended request will be used for
collision checking.

If a gripper_id is given for a grasp and the corresponding gripper has elements of
function_type FINGER, each grasp can also specify values for stroke_per_finger_approach_mm and
stroke_per_finger_grasp_mm. These values give the amount of translation of a finger in millimeters
by which the finger element and all its child elements are moved from the zero_pose towards the pose
of the finger element. The stroke_per_finger_approach_mm value is applied during collision check-
ing when the grasp is approached. The stroke_per_finger_grasp_mm is not used for collision check-
ing, but holds information about the gripper opening while grasping, so that this field implicitly defines
the finger’s motion direction for performing the grasp. If neither stroke_per_finger_approach_mm nor
stroke_per_finger_grasp_mm are given, the gripper will be used for collision checking with the fingers
in their default poses.

When a grasp is defined on a symmetric object, all grasps symmetric to the defined one will automati-
cally be considered in the SilhouetteMatch module’s detect_object and detect_object_extended ser-
vice calls. Symmetric grasps for a given grasp point can be retrieved using the get_symmetric_grasps
service call and visualized in the Web GUI.

Users can also define replications of grasps around a custom axis. These replications spawn multiple
grasps and free users from setting too many grasps manually. The replication origin is defined as a
coordinate frame in the object’s coordinate frame and the x axis of the replication origin frame corre-
sponds to the replication axis. The grasp is replicated by rotating it around this x axis starting from its
original pose. The replication is done in steps of size step_x_deg degrees. The range is defined by the
minimal and maximal boundaries min_x_deg and max_x_deg. The minimal (maximal) boundary must be
a non-positive (non-negative) number up to (minus) 180 degrees.

Setting grasp points in the Web GUI

The rc_visard NG Web GUI provides an intuitive and interactive way of defining grasp points for object
templates. In a first step, the object template has to be uploaded to the rc_visard NG. This can be done
in the Web GUI in any pipeline under Modules → SilhouetteMatch by clicking on + Add a new Template
in the Templates and Grasps section, or in Database → Templates in the SilhouetteMatch Templates
and Grasps section. Once the template upload is complete, a dialog with a 3D visualization of the object
template is shown for adding or editing grasp points. The same dialog appears when editing an existing
template. If the template contains a collision model or a visualization model, this 3D model is visualized
as well.

Roboception GmbH
Manual: rc_visard_ng

130 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

This dialog provides two ways for setting grasp points:

1. Adding grasps manually: By clicking on the + symbol, a new grasp is placed in the object origin.
The grasp can be given a unique name which corresponds to its ID. The desired pose of the grasp
can be entered in the fields for Position and Roll/Pitch/Yaw which are given in the coordinate frame
of the object template represented by the long x, y and z axes in the visualization. The grasp point
can be placed freely with respect to the object template - inside, outside or on the surface. The
grasp point and its orientation are visualized in 3D for verification.

2. Adding grasps interactively: Grasp points can be added interactively by first clicking on the Add
Grasp button in the upper right corner of the visualization and then clicking on the desired point
on the object template visualization. If the 3D model is displayed, the grasps will be attached to
the surface of the 3D model. Otherwise, the grasp is attached to the template surface. The grasp
orientation is a right-handed coordinate system and is chosen such that its z axis is perpendicular
to the surface pointing inside the template at the grasp position. The position and orientation in the
object coordinate frame is displayed on the right. The position and orientation of the grasp can also
be changed interactively. In case Snap to surface is disabled (default), the grasp can be translated
and rotated freely in all three dimensions by clicking on Move Grasp in the visualization menu and
then dragging the grasp along the appropriate axis to the desired position. The orientation of the
grasp can also be changed by rotating the axis with the mouse. In case Snap to surface is enabled
in the visualization, the grasp can only be moved along the model surface.

Users can also specify a grasp priority by changing the Priority slider. A dedicated gripper can be
selected in the Gripper drop down field.

By activating the Replication check box, users can replicate the grasp around a custom axis. The
replication axis and the resulting replicated grasps are visualized. The position and orientation of the
replication axis relative to the object coordinate frame can be adjusted interactively by clicking on Move
Replication Axis in the visualization menu and then dragging the axis to the desired position and orien-
tation. The grasps are replicated within the specified rotation range at the selected rotation step size.
Users can cycle through a visualization of the replicated grasps by dragging the bar below Cycle through
n replicated grasps in the View Options section of the visualization menu. If a gripper is selected for the
grasp or a gripper has been chosen in the visualization menu, the gripper is also shown at the currently
selected grasp.

If the object template has symmetries, the grasps which are symmetric to the defined grasps can be
displayed along with their replications (if defined) by enabling . . . symmetries in the View Options
section of the visualization menu. The user can also cycle through a visualization of the symmetric
grasps by dragging the bar below Cycle through n symmetric grasps.

Setting grasp points via the REST-API

Grasp points can be set via the REST-API interface (Section 7.2) using the set_grasp or
set_all_grasps services (see Internal services, Section 6.2.6.12). A grasp consists of the template_id
of the template to which the grasp should be attached, an id uniquely identifying the grasp point and
the pose. The pose is given in the coordinate frame of the object template and consists of a position
in meters and an orientation as quaternion. A dedicated gripper can be specified through setting the
gripper_id field. The priority is specified by an integer value, ranging from -2 for very low, to 2 for
very high with a step size of 1. The replication origin is defined as a transformation in the object’s co-
ordinate frame and the x axis of the transformation corresponds to the replication axis. The replication
range is controlled by the min_x_deg and max_x_deg fields and the step size step_x_deg.

6.2.6.5 Setting the preferred orientation of the TCP

The SilhouetteMatch module determines the reachability of grasp points based on the preferred orien-
tation of the TCP. The preferred orientation can be set via the set_preferred_orientation service or
on the SilhouetteMatch page in the Web GUI. The resulting direction of the TCP’s z axis is used to reject
grasps which cannot be reached by the gripper. Furthermore, the preferred orientation can be used to
sort the reachable grasps by setting the corresponding sorting strategy.

Roboception GmbH
Manual: rc_visard_ng

131 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

The preferred orientation can be set in the camera coordinate frame or in the external coordinate frame,
in case a hand-eye calibration is available. If the preferred orientation is specified in the external coor-
dinate frame and the sensor is robot mounted, the current robot pose has to be given to each object
detection call. If no preferred orientation is set, the orientation of the left camera (see Coordinate frames
) will be used as the preferred orientation of the TCP.

6.2.6.6 Setting the sorting strategies

The objects and grasps returned by the detect_object and detect_object_extended service call are
sorted according to a sorting strategy which can be chosen by the user. The following sorting strategies
are available and can be set in the Web GUI (Section 7.1) or using the set_sorting_strategies service
call:

• preferred_orientation: matches and grasp points with minimal rotation difference of a chosen
axis (or all axes, when axis is empty) with respect to the preferred TCP orientation are returned
first,

• direction: objects and grasp points with the shortest distance along a defined direction vector
in a given pose_frame are returned first.

• distance_to_point: objects and grasp points with the shortest or farthest (if farthest_first is
true) distance from a point in a given pose_frame are returned first.

If no sorting strategy is set or default sorting is chosen in the Web GUI, sorting is done based on a
combination of preferred_orientation and the minimal distance from the camera along the z axis of
the preferred orientation of the TCP.

6.2.6.7 Detection of objects

For triggering the object detection, in general, the following information must be provided to the Silhou-
etteMatch module:

• The template of the object to be detected in the scene.

• The coordinate frame in which the poses of the detected objects shall be returned (ref. Hand-eye
calibration, Section 6.2.6.8).

Optionally, further information can be given to the SilhouetteMatch module:

• A flag object_plane_detection determining whether the surface plane of the objects should be
used for the detection instead of the calibrated base plane.

• An offset, in case the calibrated base plane should be used but the objects are not lying on
this plane but on a plane parallel to it. The offset is the distance between both planes given in
the direction towards the camera. If omitted, an offset of 0 is assumed. It must not be set if
object_plane_detection is true.

• The ID of the load carrier which contains the objects to be detected.

• The ID of the region of interest where to search for the load carrier if a load carrier is set. Other-
wise, the ID of the region of interest where the objects should be detected. If omitted, objects are
matched in the whole image.

• The current robot pose in case the camera is mounted on the robot and the chosen coordinate
frame for the poses is external or the preferred orientation is given in the external frame.

• Collision detection information: The ID of the gripper to enable collision checking and optionally
a pre-grasp offset to define a pre-grasp position. Details on collision checking are given below in
CollisionCheck (Section 6.2.6.8).

In case the object_plane_detection flag is not true, objects can only be detected after a successful
base-plane calibration. It must be ensured that the position and orientation of the base plane does not
change before the detection of objects. Otherwise, the base-plane calibration must be renewed.

Roboception GmbH
Manual: rc_visard_ng

132 Rev: 26.01.3
Status: Jan 30, 2026

https://doc.rc-visard.com/latest/en/hardware_spec.html#sect-coordinate-frames

6.2. Detection & Measure modules

When object_plane_detection is set to true, a base-plane calibration is not required and an existing
base-plane calibration will be ignored. During detection, the scene is clustered into planar surfaces and
template matching is performed on each plane whose tilt with respect to the camera’s line of sight is
less than 25° and whose size is large enough to contain the selected template. When a match is found,
its position and orientation are refined using the image edges and the point cloud inside the template’s
outer contour. For this, it is required that the outer contour of the template is closed and that the object’s
surface is planar.

On the Web GUI the detection can be tested in the Try Out section of the SilhouetteMatch page. Differ-
ent image streams can be selected to show intermediate results and the final matches.

The “Template” image stream shows the template to be matched in green with the de-
fined grasp points in green (see Setting of grasp points, Section 6.2.6.4). The template
is warped to the size and tilt matching objects on the calibrated base plane or, in case
object_plane_detection was used, the highest segmented plane, would have. The corre-
sponding plane is shown in dark blue.

The “Intermediate Result” image stream shows the edges of the left image that were used
to search for matches in light blue. The chosen region of interest is shown as bold petrol
rectangle. A shaded blue area on the left visualizes the region of the left camera image
which does not overlap with the right image, and in which no objects can be detected.
If object_plane_detection was used, this image stream also shows the detected planar
clusters in the scene. Clusters that were not used for matching, because they were too
small or too tilted, are visualized with a stripe pattern.

The “Intermediate Result Right” image stream shows the edges of the right image that
were used to search for matches in light blue. The chosen region of interest is shown as
bold petrol rectangle. A shaded blue area on the right visualizes the region of the right
camera image which does not overlap with the left image, and in which no objects can be
detected.

The poses of the object origins in the chosen coordinate frame are returned as results in a list of
instances. In case the calibrated base plane was used for the detection (object_plane_detection not
set or false), the orientations of the detected objects are aligned with the normal of the base plane.
Otherwise, the orientations of the detected objects are aligned with the normal of a plane fitted to the
object points in the 3D point cloud.

If the chosen template also has grasp points attached, a list of grasps for all objects is returned in
addition to the list of detected objects. The grasp poses are given in the desired coordinate frame and
the grasps are sorted according to the selected sorting strategy (see Setting the sorting strategies,
Section 6.2.6.6). There are references between the detected object instances and the grasps via their
uuids.

In case the templates have a continuous rotational symmetry (e.g. cylindrical objects), all returned
object poses will have the same orientation. Furthermore, all grasps symmetric to each grasp point
on an object are checked for reachability and collisions, and only the best one according to the given
sorting strategy is returned.

For objects with a discrete symmetry (e.g. prismatic objects), all collision-free symmetries of each grasp
point which are reachable according to the given preferred TCP orientation are returned, ordered by the
given sorting strategy.

The detection results and run times are affected by several run-time parameters which are listed and
explained further down. Improper parameters can lead to timeouts of the SilhouetteMatch module’s
detection process.

6.2.6.8 Interaction with other modules

Internally, the SilhouetteMatch module depends on, and interacts with other on-board modules as listed
below.

Roboception GmbH
Manual: rc_visard_ng

133 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Note: All changes and configuration updates to these modules will affect the performance of the
SilhouetteMatch module.

Camera and depth data

The SilhouetteMatch module makes internally use of the rectified images from the Camera module
(rc_camera, Section 6.1). Thus, the exposure time should be set properly to achieve the optimal perfor-
mance of the module.

For base-plane calibration in stereo mode, for load carrier detection, for automatic object plane de-
tection and for collision checking with the point cloud, the disparity images from the stereo_matching
(rc_stereomatching, Section ??) are used.

For detecting objects with a calibrated base plane, without load carrier and without collision checking
with the point cloud, the stereo-matching module should not be run in parallel to the SilhouetteMatch
module, because the detection runtime increases.

For best results it is recommended to enable smoothing (Section ??) for stereo_matching.

IO and Projector Control

In case the rc_visard NG is used in conjunction with an external random dot projector and the IO and
Projector Control module (rc_iocontrol, Section 6.3.4), the projector should be used for the stereo-
based base-plane calibration, for automatic object plane detection and for collision checking with the
point cloud.

The projected pattern must not be visible in the left and right camera images during object detection as
it interferes with the matching process. Therefore, it is recommended to connect the projector to GPIO
Out 1 and set the stereo-camera module’s acquisition mode to SingleFrameOut1 (see Stereo matching
parameters, Section ??), so that on each image acquisition trigger an image with and without projector
pattern is acquired.

Alternatively, the output mode for the GPIO output in use should be set to ExposureAlternateActive
(see Description of run-time parameters, Section 6.3.4.1).

In either case, the Auto Exposure Mode exp_auto_mode should be set to AdaptiveOut1 to optimize the
exposure of both images.

Hand-eye calibration

In case the camera has been calibrated to a robot, the SilhouetteMatch module can automatically pro-
vide poses in the robot coordinate frame. For the SilhouetteMatch node’s Services (Section 6.2.6.11),
the frame of the input and output poses and plane coordinates can be controlled with the pose_frame
argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses and plane coordinates provided to and by the module are in
the camera frame.

2. External frame (external). All poses and plane coordinates provided to and by the module
are in the external frame, configured by the user during the hand-eye calibration process. The
module relies on the on-board Hand-eye calibration module (Section 6.3.1) to retrieve the camera
mounting (static or robot mounted) and the hand-eye transformation. If the sensor mounting is
static, no further information is needed. If the sensor is robot-mounted, the robot_pose is required
to transform poses to and from the external frame.

All pose_frame values that are not camera or external are rejected.

Roboception GmbH
Manual: rc_visard_ng

134 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

Note: If the hand-eye calibration has changed after base-plane calibration, the base-plane calibration
will be marked as invalid and must be renewed.

If the sensor is robot-mounted, the current robot_pose has to be provided depending on the value of
pose_frame, the definition of the preferred TCP orientation and the sorting direction or sorting point:

• If pose_frame is set to external, providing the robot pose is obligatory.

• If the preferred TCP orientation is defined in external, providing the robot pose is obligatory.

• If the sorting direction is defined in external, providing the robot pose is obligatory.

• If the distance-to-point sorting strategy is defined in external, providing the robot pose is obliga-
tory.

• In all other cases, providing the robot pose is optional.

If the current robot pose is provided during calibration, it is stored persistently on the rc_visard NG.
If the updated robot pose is later provided during get_base_plane_calibration, detect_object or
detect_object_extended as well, the base-plane calibration will be transformed automatically to this
new robot pose. This enables the user to change the robot pose (and thus camera position) between
base-plane calibration and object detection.

Note: Object detection can only be performed if the limit of 10 degrees angle offset between the
base plane normal and the camera’s line of sight is not exceeded.

LoadCarrier

The SilhouetteMatch module uses the load carrier detection functionality provided by the LoadCarrier
module (rc_load_carrier, Section 6.2.2), with the run-time parameters specified for this module. How-
ever, only one load carrier will be returned and used in case multiple matching load carriers could be
found in the scene. In case multiple load carriers of the same type are visible, a region of interest should
be set to ensure that always the same load carrier is used for the SilhouetteMatch module.

CollisionCheck

Collision checking can be easily enabled for grasp computation of the SilhouetteMatch module by pass-
ing a collision_detection argument to the detect_object service call. It contains the ID of the used
gripper and optionally a pre-grasp offset. The gripper has to be defined in the GripperDB module (see
Setting a gripper , Section 6.4.3.2) and details about collision checking are given in Collision checking
within other modules (Section 6.3.2.2).

Alternatively, grasp points can be assigned individual gripper IDs, and collision checking can be enabled
for all grasp points with gripper IDs by enabling the run-time parameter check_collisions.

In addition to collision checking between the gripper and the detected load carrier, collisions
between the gripper and the calibrated base plane will be checked, if the run-time parameter
check_collisions_with_base_plane is true. If the selected SilhouetteMatch template contains a col-
lision model and the run-time parameter check_collisions_with_matches is true, also collisions be-
tween the gripper and all other detected objects (not limited to max_number_of_detected_objects) will
be checked. The object on which the grasp point to be checked is located, is excluded from the collision
check.

If the run-time parameter check_collisions_with_point_cloud is true, also collisions between the
gripper and a watertight version of the point cloud are checked. If this feature is used with suctions
grippers, it should be ensured that the TCP is defined to be outside the gripper geometry, or that

Roboception GmbH
Manual: rc_visard_ng

135 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

the grasp points are defined above the object surface. Otherwise every grasp will result in a collision
between the gripper and the point cloud.

If the run-time parameter check_collisions_during_retraction is true and a load carrier and a pre-
grasp offset are given, each grasp point will be checked for collisions between the object in the gripper
and the load carrier walls during retraction. This collision check is performed along the full linear trajec-
tory from the grasp point back to the pre-grasp position.

If collision checking is enabled, only grasps which are collision free or could not be checked for collisions
(e.g. because no gripper was given) will be returned. The visualization images on the SilhouetteMatch
page of the Web GUI shows collision-free grasps in green, unchecked grasps in yellow and colliding
grasp points in red. The detected objects which are considered in the collision check are also visualized
with their edges in green.

The CollisionCheck module’s run-time parameters affect the collision detection as described in Colli-
sionCheck Parameters (Section 6.3.2.3).

6.2.6.9 Parameters

The SilhouetteMatch software module is called rc_silhouettematch in the REST-API and is repre-
sented in the Web GUI (Section 7.1) under Modules → SilhouetteMatch. The user can explore and
configure the rc_silhouettematch module’s run-time parameters, e.g. for development and testing,
using the Web GUI or the REST-API interface (Section 7.2).

Parameter overview

This module offers the following run-time parameters:

Roboception GmbH
Manual: rc_visard_ng

136 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Table 6.24: The rc_silhouettematch module’s run-time parame-
ters

Name Type Min Max Default Description
check_collisions bool false true false Whether to check for collisions

when a gripper is defined for a grasp
check_collisions_during_-
retraction

bool false true false Whether to check for collisions be-
tween the object in the gripper and
the load carrier during retraction

check_collisions_with_-
base_plane

bool false true true Whether to check for collisions be-
tween gripper and base plane

check_collisions_with_-
matches

bool false true true Whether to check for collisions
between gripper and detected
matches

check_collisions_with_-
point_cloud

bool false true false Whether to check for collisions be-
tween gripper and the point cloud

edge_sensitivity float64 0.1 1.0 0.7 Sensitivity of the edge detector
match_max_distance float64 0.1 10.0 3.0 Maximum allowed distance in pixels

between the template and the de-
tected edges in the image

match_percentile float64 0.7 1.0 0.8 Percentage of template pixels that
must be within the maximum dis-
tance to successfully match the
template

max_number_of_detected_-
objects

int32 1 20 10 Maximum number of detected ob-
jects

max_object_overlap float64 0.0 1.0 0.05 Maximum fraction of object surface
that is allowed to be overlapped by
other segmented objects

only_highest_priority_-
grasps

bool false true false Whether to return only the highest
priority level grasps

point_cloud_enhancement string - - Off Type of enhancement of the point
cloud using the base plane: [Off,
ReplaceBright]

quality string - - High Quality: [Low, Medium, High]

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s SilhouetteMatch page. The name
in the Web GUI is given in brackets behind the parameter name and the parameters are listed in the
order they appear in the Web GUI:

max_number_of_detected_objects (Maximum Object Number)

This parameter gives the maximum number of objects to detect in the scene. If
more than the given number of objects can be detected in the scene, only the
objects matching best to the given sorting strategy are returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/parameters/parameters?
→˓max_number_of_detected_objects=<value>

API version 1 (deprecated)

Roboception GmbH
Manual: rc_visard_ng

137 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?max_number_of_detected_

→˓objects=<value>

quality (Quality)

Object detection can be performed on images with different resolutions: High (full
image resolution), Medium (half image resolution) and Low (quarter image resolu-
tion). The lower the resolution, the lower the detection time, but the fewer details
of the objects are visible.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/parameters/parameters?
→˓quality=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?quality=<value>

match_max_distance (Maximum Matching Distance)

This parameter gives the maximum allowed pixel distance of an image edge pixel
from the object edge pixel in the template to be still considered as matching. If the
object is not perfectly represented in the template, it might not be detected when
this parameter is low. High values, however, might lead to false detections in case
of a cluttered scene or the presence of similar objects, and also increase runtime.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/parameters/parameters?
→˓match_max_distance=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?match_max_distance=<value>

match_percentile (Matching Percentile)

This parameter indicates how strict the matching process should be. The matching
percentile is the ratio of template pixels that must be within the Maximum Matching
Distance to successfully match the template. The higher this number, the more
accurate the match must be to be considered as valid.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/parameters/parameters?
→˓match_percentile=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?match_percentile=<value>

Roboception GmbH
Manual: rc_visard_ng

138 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

edge_sensitivity (Edge Sensitivity)

This parameter influences how many edges are detected in the left and right cam-
era images. The higher this number, the more edges are found in the intensity
images. That means, for lower numbers, only the most significant edges are con-
sidered for template matching. A large number of edges in the image might in-
crease the detection time. It must be ensured that the edges of the objects to be
detected are detected in both, the left and the right camera images.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/parameters/parameters?
→˓edge_sensitivity=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?edge_sensitivity=<value>

only_highest_priority_grasps (Only Highest Priority Grasps)

If set to true, only grasps with the highest priority will be returned. If collision checking is
enabled, only the collision-free grasps among the group of grasps with the highest priority
are returned. This can save computation time and reduce the number of grasps to be parsed
on the application side.

Without collision checking, only grasps of highest priority are returned.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?only_

→˓highest_priority_grasps=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?only_highest_priority_

→˓grasps=<value>

check_collisions (Check Collisions)

If this parameter is enabled, collision checking will be performed for all grasps
which have a gripper ID assigned, even when no default gripper is given in the
detect_object service call. If a load carrier is used, the collision check will always
be performed between the gripper and the load carrier. Collision checking with the
point cloud and other matches is only performed when the corresponding runtime
parameters are enabled.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?check_

→˓collisions=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?check_collisions=<value>

Roboception GmbH
Manual: rc_visard_ng

139 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

check_collisions_with_base_plane (Check Collisions with Base Plane)

This parameter is only used when collision checking is enabled by passing a grip-
per to the detect_object service call or by enabling the check_collisions run-
time parameter. If check_collisions_with_base_plane is set to true, all grasp
points will be checked for collisions between the gripper and the calibrated base
plane, and only grasp points at which the gripper would not collide with the base
plane will be returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/parameters/parameters?
→˓check_collisions_with_base_plane=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?check_collisions_with_

→˓base_plane=<value>

check_collisions_with_matches (Check Collisions with Matches)

This parameter is only used when collision checking is enabled by passing a grip-
per to the detect_object service call or by enabling the check_collisions run-
time parameter. If check_collisions_with_matches is set to true, all grasp points
will be checked for collisions between the gripper and all other detected objects
(not limited to max_number_of_detected_objects), and only grasp points at which
the gripper would not collide with any other detected object will be returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/parameters/parameters?
→˓check_collisions_with_matches=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?check_collisions_with_

→˓matches=<value>

check_collisions_with_point_cloud (Check Collisions with Point Cloud)

This parameter is only used when collision checking is enabled by passing a
gripper to the detect_object service call or by enabling the check_collisions
runtime parameter. If check_collisions_with_point_cloud set to true, all grasp
points will be checked for collisions between the gripper and a watertight version
of the point cloud, and only grasp points at which the gripper would not collide with
this point cloud will be returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?check_

→˓collisions_with_point_cloud=<value>

API version 1 (deprecated)

Roboception GmbH
Manual: rc_visard_ng

140 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?check_collisions_with_

→˓point_cloud=<value>

point_cloud_enhancement (Enhance with Base Plane)

This parameter is only considered when check_collisions_with_point_cloud
is true and the object detection was triggered without object_plane_detection.
By default, point_cloud_enhancement is set to Off (Off). If
point_cloud_enhancement is set to ReplaceBright (Replace Bright Image
Pixels), the calibrated base plane will be used to enhance the point cloud that is
used for collision checking. For this, the depth values of all bright image pixels
inside the image or, if set, the 2D region of interest will be set to the depth of the
calibrated base plane. This parameter should be used when dark objects are
placed on an untextured bright background, e.g. on a light table.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?point_

→˓cloud_enhancement=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?point_cloud_enhancement=
→˓<value>

check_collisions_during_retraction (Check Collisions during Retraction)

This parameter is only used when collision checking is enabled by passing a grip-
per to the detect_object service call or by enabling the check_collisions run-
time parameter. When check_collisions_during_retraction is enabled and a
load carrier and a pre-grasp offset are given, each grasp point will be checked
for collisions between the object in the gripper and the load carrier walls during
retraction. This collision checking is performed along the full linear trajectory from
the grasp point back to the pre-grasp position. Only collision-free grasp points will
be returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?check_

→˓collisions_during_retraction=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?check_collisions_during_

→˓retraction=<value>

6.2.6.10 Status values

This module reports the following status values:

Roboception GmbH
Manual: rc_visard_ng

141 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Table 6.25: The rc_silhouettematch module’s status values
Name Description
data_acquisition_time Time in seconds required by the last active service to acquire

images
last_timestamp_processed The timestamp of the last processed dataset
load_carrier_detection_time Processing time of the last load carrier detection in seconds
processing_time Processing time of the last detection (including load carrier

detection) in seconds

6.2.6.11 Services

The user can explore and call the rc_silhouettematch module’s services, e.g. for development and
testing, using the REST-API interface (Section 7.2) or the rc_visard NG Web GUI (Section 7.1).

The SilhouetteMatch module offers the following services.

detect_object

Triggers an object detection as described in Detection of objects (Section 6.2.6.7) and re-
turns the pose of all found object instances.

Details

All images used by the service are guaranteed to be newer than the service trigger time.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/detect_object

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/detect_object

Request

Required arguments:

object_id in object_to_detect: ID of the template which should be detected.

pose_frame: see Hand-eye calibration (Section 6.2.6.8).

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.2.6.8).

Optional arguments:

object_plane_detection: false if the objects are placed on a calibrated base
plane, true if the objects’ surfaces are planar and the base plane is unknown or
the objects are located on multiple different planes, e.g. stacks.

offset: offset in meters by which the base-plane calibration will be shifted towards
the camera.

load_carrier_id: ID of the load carrier which contains the items to be detected.

collision_detection: see Collision checking within other modules (Section
6.3.2.2).

The definition for the request arguments with corresponding datatypes is:

Roboception GmbH
Manual: rc_visard_ng

142 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"load_carrier_id": "string",
"object_plane_detection": "bool",
"object_segmentation_model": "string",
"object_to_detect": {
"object_id": "string",
"region_of_interest_2d_id": "string"

},
"offset": "float64",
"pose_frame": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

The maximum number of returned instances can be controlled with the
max_number_of_detected_objects parameter.

object_id: ID of the detected template.

instances: list of detected object instances, ordered according to the chosen sorting strat-
egy.

grasps: list of grasps on the detected objects, ordered according to the chosen sorting
strategy. The instance_uuid gives the reference to the detected object in instances this
grasp belongs to. The list of returned grasps will be trimmed to the 100 best grasps if
more reachable grasps are found. Each grasp contains a flag collision_checked and a
gripper_id (see Collision checking within other modules, Section 6.3.2.2).

load_carriers: list of detected load carriers.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "detect_object",
"response": {
"grasps": [

{

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

143 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"collision_checked": "bool",
"gripper_id": "string",
"id": "string",
"instance_uuid": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"priority": "int8",
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"instances": [

{
"grasp_uuids": [

"string"
],
"id": "string",
"object_id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

144 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"object_id": "string",
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

detect_object_extended

Triggers an object detection in the same way as detect_object, but returns the instance in-
formation for each grasp directly instead of as a separate list. This allows for easier parsing,
e.g. when the instance pose for each grasp is required for placing the object.

Details

All images used by the service are guaranteed to be newer than the service trigger time.

This service can be called as follows.

API version 2

Roboception GmbH
Manual: rc_visard_ng

145 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/detect_object_

→˓extended

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/detect_object_extended

Request

See detect_object service.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"load_carrier_id": "string",
"object_plane_detection": "bool",
"object_segmentation_model": "string",
"object_to_detect": {
"object_id": "string",
"region_of_interest_2d_id": "string"

},
"offset": "float64",
"pose_frame": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

The maximum number of returned instances can be controlled with the
max_number_of_detected_objects parameter.

object_id: ID of the detected template.

grasps: list of grasps on the detected objects, ordered according to the chosen sorting strat-
egy. Each grasp contains an instance field with information about the detected object, e.g.
its pose. The list of returned grasps will be trimmed to the 100 best grasps if more reachable
grasps are found. Each grasp contains a flag collision_checked and a gripper_id (see
Collision checking within other modules, Section 6.3.2.2).

load_carriers: list of detected load carriers.

timestamp: timestamp of the image set the detection ran on.

Roboception GmbH
Manual: rc_visard_ng

146 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "detect_object_extended",
"response": {

"grasps": [
{

"collision_checked": "bool",
"gripper_id": "string",
"id": "string",
"instance": {
"object_id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"uuid": "string"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"priority": "int8",
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

147 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"object_id": "string",
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

calibrate_base_plane

Triggers the calibration of the base plane, as described in Base-plane calibration (Section
6.2.6.2).

Details

A successful base-plane calibration is stored persistently on the rc_visard NG and returned
by this service. The base-plane calibration is persistent over firmware updates and rollbacks.

All images used by the service are guaranteed to be newer than the service trigger time.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/calibrate_base_

→˓plane (continues on next page)

Roboception GmbH
Manual: rc_visard_ng

148 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/calibrate_base_plane

Request

Required arguments:

plane_estimation_method: method to use for base-plane calibration. Valid values
are STEREO, APRILTAG, MANUAL.

pose_frame: see Hand-eye calibration (Section 6.2.6.8).

Potentially required arguments:

plane if plane_estimation_method is MANUAL: plane that will be set as base-plane
calibration.

robot_pose: see Hand-eye calibration (Section 6.2.6.8).

region_of_interest_2d_id: ID of the region of interest for base-plane calibration.

Optional arguments:

offset: offset in meters by which the estimated plane will be shifted towards the
camera.

plane_preference in stereo: whether the plane closest to or farthest from
the camera should be used as base plane. This option can be set only if
plane_estimation_method is STEREO. Valid values are CLOSEST and FARTHEST. If
not set, the default is FARTHEST.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"offset": "float64",
"plane": {

"distance": "float64",
"normal": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"plane_estimation_method": "string",
"pose_frame": "string",
"region_of_interest_2d_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"stereo": {

"plane_preference": "string"

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

149 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

}
}

}

Response

plane: calibrated base plane.

timestamp: timestamp of the image set the calibration ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "calibrate_base_plane",
"response": {

"plane": {
"distance": "float64",
"normal": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

},
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

get_base_plane_calibration

Returns the configured base-plane calibration.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/get_base_plane_

→˓calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_base_plane_calibration

Request

Required arguments:

pose_frame: see Hand-eye calibration (Section 6.2.6.8).

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.2.6.8).

Roboception GmbH
Manual: rc_visard_ng

150 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose_frame": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_base_plane_calibration",
"response": {

"plane": {
"distance": "float64",
"normal": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

},
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_base_plane_calibration

Deletes the configured base-plane calibration.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/delete_base_

→˓plane_calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/delete_base_plane_

→˓calibration

Roboception GmbH
Manual: rc_visard_ng

151 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "delete_base_plane_calibration",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_preferred_orientation

Persistently stores the preferred orientation of the TCP to compute the reachability of
the grasps, which is used for filtering and, optionally, sorting the grasps returned by the
detect_object and detect_object_extended service (see Setting the preferred orientation
of the TCP, Section 6.2.6.5).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/set_preferred_

→˓orientation

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_preferred_orientation

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_preferred_orientation",
"response": {

"return_code": {
"message": "string",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

152 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"value": "int16"
}

}
}

get_preferred_orientation

Returns the preferred orientation of the TCP to compute the reachability of the grasps, which
is used for filtering and, optionally, sorting the grasps returned by the detect_object and
detect_object_extended service (see Setting the preferred orientation of the TCP, Section
6.2.6.5).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/get_preferred_

→˓orientation

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_preferred_orientation

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_preferred_orientation",
"response": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_sorting_strategies

Persistently stores the sorting strategy for sorting the grasps and detected objects returned
by the detect_object and detect_object_extended service (see Detection of objects, Sec-
tion 6.2.6.7).

Details

This service can be called as follows.

API version 2

Roboception GmbH
Manual: rc_visard_ng

153 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/set_sorting_

→˓strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_sorting_strategies

Request

Only one strategy may have a weight greater than 0. If all weight values are set to 0, the
module will use the default sorting strategy.

If the weight for direction is set, the vector must contain the direction vector and
pose_frame must be either camera or external.

If the weight for distance_to_point is set, point must contain the sorting point and
pose_frame must be either camera or external.

If the weight for preferred_orientation is set, the axis can be set to x, y or z to consider
only rotational differences between the respective axes. If axis is empty, the full orientation
difference will be used for sorting.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"direction": {
"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"weight": "float64"

},
"preferred_orientation": {
"axis": "string",
"weight": "float64"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_sorting_strategies",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

154 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

}
}

get_sorting_strategies

Returns the sorting strategy for sorting the grasps and detected objects returned by the
detect_object and detect_object_extended service (see Detection of objects, Section
6.2.6.7).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/get_sorting_

→˓strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_sorting_strategies

Request

This service has no arguments.

Response

All weight values are 0 when the module uses the default sorting strategy.

The definition for the response with corresponding datatypes is:

{
"name": "get_sorting_strategies",
"response": {
"direction": {

"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"weight": "float64"

},
"preferred_orientation": {
"axis": "string",
"weight": "float64"

},
"return_code": {
"message": "string",
"value": "int16"

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

155 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

}
}

}

reset_defaults

Resets all parameters of the module to its default values, as listed in above table. Also
resets preferred orientation and sorting strategies. The reset does not apply to templates
and base-plane calibration.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.2.6.12 Internal services

The following services for configuring grasps can change in future without notice. Setting, retrieving and
deleting grasps is recommend to be done via the Web GUI.

set_grasp

Persistently stores a grasp for the given object template on the rc_visard NG. All configured
grasps are persistent over firmware updates and rollbacks.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/set_grasp

API version 1 (deprecated)

Roboception GmbH
Manual: rc_visard_ng

156 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_grasp

Request

Details for the definition of the grasp type are given in Setting of grasp points (Section
6.2.6.4).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp": {
"gripper_id": "string",
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {

"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"template_id": "string"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_grasp",
"response": {
"return_code": {
"message": "string",
"value": "int16"

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

157 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

}
}

}

set_all_grasps

Replaces the list of grasps for the given object template on the rc_visard NG.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/set_all_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_all_grasps

Request

Details for the definition of the grasp type are given in Setting of grasp points (Section
6.2.6.4).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasps": [
{

"gripper_id": "string",
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

158 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

}
},
"step_x_deg": "float64"

},
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"template_id": "string"

}
],
"template_id": "string"

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_all_grasps",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_grasps

Returns all configured grasps which have the requested grasp_ids and belong to the re-
quested template_ids.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/get_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_grasps

Request

If no grasp_ids are provided, all grasps belonging to the requested template_ids are re-
turned. If no template_ids are provided, all grasps with the requested grasp_ids are re-
turned. If neither IDs are provided, all configured grasps are returned.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Roboception GmbH
Manual: rc_visard_ng

159 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_grasps",
"response": {
"grasps": [

{
"gripper_id": "string",
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"template_id": "string"

}
],
"return_code": {

"message": "string",
"value": "int16"

}
}

}

delete_grasps

Deletes all grasps with the requested grasp_ids that belong to the requested template_ids.

Details

This service can be called as follows.

Roboception GmbH
Manual: rc_visard_ng

160 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/delete_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/delete_grasps

Request

If no grasp_ids are provided, all grasps belonging to the requested template_ids are
deleted. The template_ids list must not be empty.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "delete_grasps",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_symmetric_grasps

Returns all grasps that are symmetric to the given grasp.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/get_symmetric_

→˓grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_symmetric_grasps

Request

Details for the definition of the grasp type are given in Setting of grasp points (Section
6.2.6.4).

The definition for the request arguments with corresponding datatypes is:

Roboception GmbH
Manual: rc_visard_ng

161 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

{
"args": {

"grasp": {
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"replication": {

"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}
}

}

Response

The first grasp in the returned list is the one that was passed with the service call. If the
object template does not have an exact symmetry, only the grasp passed with the service
call will be returned. If the object template has a continuous symmetry (e.g. a cylindrical
object), only 12 equally spaced sample grasps will be returned.

Details for the definition of the grasp type are given in Setting of grasp points (Section
6.2.6.4).

The definition for the response with corresponding datatypes is:

{
"name": "get_symmetric_grasps",
"response": {

"grasps": [
{

"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

162 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}
],
"return_code": {

"message": "string",
"value": "int16"

}
}

}

6.2.6.13 Return codes

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate
that the service failed. Positive return_code values indicate that the service succeeded with additional
information.

Roboception GmbH
Manual: rc_visard_ng

163 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Table 6.26: Return codes of the SilhouetteMatch module services
Code Description

0 Success
-1 An invalid argument was provided.
-3 An internal timeout occurred, e.g. during object detection.
-4 Data acquisition took longer than allowed.
-7 Data could not be read or written to persistent storage.
-8 Module is not in a state in which this service can be called. E.g. detect_object cannot be

called if there is no base-plane calibration.
-10 New element could not be added as the maximum storage capacity of regions of interest or

templates has been exceeded.
-100 An internal error occurred.
-101 Detection of the base plane failed.
-102 The hand-eye calibration changed since the last base-plane calibration.
-104 Offset between the base plane normal and the camera’s line of sight exceeds 10 degrees.
10 The maximum storage capacity of regions of interest or templates has been reached.
11 An existing element was overwritten.

100 The requested load carrier was not detected in the scene.
101 None of the detected grasps is reachable.
102 The detected load carrier is empty.
103 All detected grasps are in collision.
107 The base plane was not transformed to the current camera pose, e.g. because no robot

pose was provided during base-plane calibration.
108 The template is deprecated.
109 The plane for object detection does not fit to the load carrier, e.g. objects are below the load

carrier floor.
111 The detection result’s pose could not be refined with the point cloud because the template’s

outer contour is not closed.
113 No gripper was found for collision checking.
114 Collision checking during retraction was skipped, e.g. because no load carrier or no

pre-grasp offset were given.
151 The object template has a continuous symmetry.
999 Additional hints for application development

6.2.6.14 Template API

For template upload, download, listing and removal, special REST-API endpoints are provided. Tem-
plates can also be uploaded, downloaded and removed via the Web GUI. The templates include the
grasp points, if grasp points have been configured. Up to 50 templates can be stored persistently on
the rc_visard NG.

GET /templates/rc_silhouettematch
Get list of all rc_silhouettematch templates.

Template request

GET /api/v2/templates/rc_silhouettematch HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": "string"

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

164 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

}
]

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of Template)

• 404 Not Found – node not found

Referenced Data Models

• Template (Section 7.2.3)

GET /templates/rc_silhouettematch/{id}
Get a rc_silhouettematch template. If the requested content-type is application/octet-stream, the
template is returned as file.

Template request

GET /api/v2/templates/rc_silhouettematch/<id> HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)

Response Headers

• Content-Type – application/json application/ubjson application/octet-stream

Status Codes

• 200 OK – successful operation (returns Template)

• 404 Not Found – node or template not found

Referenced Data Models

• Template (Section 7.2.3)

PUT /templates/rc_silhouettematch/{id}
Create or update a rc_silhouettematch template.

Template request

PUT /api/v2/templates/rc_silhouettematch/<id> HTTP/1.1
Accept: multipart/form-data application/json

Template response

Roboception GmbH
Manual: rc_visard_ng

165 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.2. Detection & Measure modules

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)

Form Parameters

• file – template or dxf file (required)

• object_height – object height in meters, required when uploading dxf (optional)

• units – Units for dxf file if not embedded in dxf (one of mm, cm, m, in, ft) (optional)

Request Headers

• Accept – multipart/form-data application/json

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns Template)

• 400 Bad Request – Template is not valid or max number of templates reached

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-
ule.

• 404 Not Found – node or template not found

• 413 Request Entity Too Large – Template too large

Referenced Data Models

• Template (Section 7.2.3)

DELETE /templates/rc_silhouettematch/{id}
Remove a rc_silhouettematch template.

Template request

DELETE /api/v2/templates/rc_silhouettematch/<id> HTTP/1.1
Accept: application/json application/ubjson

Parameters

• id (string) – id of the template (required)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-
ule.

Roboception GmbH
Manual: rc_visard_ng

166 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

6.2. Detection & Measure modules

• 404 Not Found – node or template not found

6.2.7 CADMatch

6.2.7.1 Introduction

The CADMatch module is an optional module of the rc_visard NG and requires a separate CADMatch
license (Section 9.4) to be purchased.

This module provides an out-of-the-box perception solution for 3D object detection and grasping. CAD-
Match targets the detection of 3D objects based on a CAD template for picking with a general gripper.
The objects can be located in a bin or placed arbitrarily in the field of view of the camera. However, their
approximate poses must be known in advance and specified as pose priors.

For the CADMatch module to work, special object templates are required for each type of object to be
detected. Please get in touch with the Roboception support (Contact , Section 12) to order a template
for your CAD file.

The CADMatch module offers:

• A dedicated page on the rc_visard NG Web GUI (Section 7.1) for easy setup, configuration, test-
ing, and application tuning.

• A REST-API interface (Section 7.2) and a KUKA Ethernet KRL Interface (Section 7.5).

• The definition of regions of interest to select relevant volumes in the scene (see RoiDB, Section
6.4.2).

• A load carrier detection functionality for bin-picking applications (see LoadCarrier , Section 6.2.2),
to provide grasps for objects inside a bin only.

• The definition of compartments inside a load carrier to provide grasps for specific volumes of the
bin only.

• An interactive 3D visualization for the definition of pose priors in the Web GUI.

• Storing of up to 50 templates.

• The definition of up to 100 grasp points for each template via an interactive visualization in the
Web GUI.

• Collision checking between the gripper and the load carrier, other detected objects and/or the
point cloud.

• Collision checking between the object in the gripper and the load carrier walls during retraction.

• Support for static and robot-mounted cameras and optional integration with the Hand-eye calibra-
tion (Section 6.3.1) module, to provide grasps in the user-configured external reference frame.

• Selection of a sorting strategy to sort the detected objects and returned grasps.

• 3D visualization of the detection results with grasp points and gripper animations in the Web GUI.

6.2.7.2 Setting of grasp points

The CADMatch module detects 3D objects in a scene based on a CAD template and returns the poses
of the object origins. To use CADMatch directly in a robot application, up to 100 grasp points can be
defined for each template. A grasp point represents the desired position and orientation of the robot’s
TCP (Tool Center Point) to grasp an object.

Please consult Setting of grasp points (Section 6.2.6.4) for further details.

Roboception GmbH
Manual: rc_visard_ng

167 Rev: 26.01.3
Status: Jan 30, 2026

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.2. Detection & Measure modules

Setting grasp points in the Web GUI

The rc_visard NG Web GUI provides an intuitive and interactive way of defining grasp points for object
templates. In a first step, the object template has to be uploaded to the rc_visard NG. This can be done
in the Web GUI in any pipeline under Modules → CADMatch by clicking on + Add a new Template in the
Templates, Grasps and Pose Priors section, or in Database → Templates in the CADMatch Templates,
Grasps and Pose Priors section. Once the template upload is complete, a dialog with a 3D visualization
of the object template is shown for adding or editing grasp points. The same dialog appears when
editing an existing template.

More details are given in Setting grasp points in the Web GUI (Section 6.2.6.4).

Setting grasp points via the REST-API

Grasp points can be set via the REST-API interface (Section 7.2) using the set_grasp or
set_all_grasps services (see Internal services, Section 6.2.7.11).

More details are given in Setting grasp points via the REST-API (Section 6.2.6.4).

6.2.7.3 Setting of pose priors

The CADMatch module requires the user to define prior poses of the objects to be detected. The pose
priors will be refined to estimate the true poses of the objects. A pose prior represents the approximate
position and orientation of the object to be detected. The pose can be defined in the camera or the
external coordinate frame, if a hand-eye calibration is available.

Each pose prior consists of an id which must be unique within all pose priors for an object template,
the template_id representing the template the pose prior applies to, the pose and the pose_frame of
the prior. Pose priors can be set via the REST-API interface (Section 7.2), or by using the interactive
visualization in the Web GUI. The Web GUI allows to interactively position the object in the current point
cloud. This can be done in the “Pose Priors” tab during editing a template.

The rc_visard NG can store up to 50 pose priors per template.

6.2.7.4 Setting the preferred orientation of the TCP

The CADMatch module determines the reachability of grasp points based on the preferred orientation
of the TCP. The preferred orientation can be set via the set_preferred_orientation service call or on
the CADMatch page in the Web GUI. The resulting direction of the TCP’s z axis is used to reject grasps
which cannot be reached by the gripper. Furthermore, the preferred orientation can be used to sort the
reachable grasps by setting the corresponding sorting strategy.

The preferred orientation can be set in the camera coordinate frame or in the external coordinate frame,
in case a hand-eye calibration is available. If the preferred orientation is specified in the external coor-
dinate frame and the sensor is robot mounted, the current robot pose has to be given to each object
detection call. If no preferred orientation is set, the orientation of the left camera (see Coordinate frames
) will be used as the preferred orientation of the TCP.

6.2.7.5 Setting the sorting strategies

The objects and grasps returned by the detect_object and detect_object_extended service call are
sorted according to a sorting strategy which can be chosen by the user. The following sorting strategies
are available and can be set in the Web GUI (Section 7.1) or using the set_sorting_strategies service
call:

• gravity: highest matches and grasp points along the gravity direction are returned first,

Roboception GmbH
Manual: rc_visard_ng

168 Rev: 26.01.3
Status: Jan 30, 2026

https://doc.rc-visard.com/latest/en/hardware_spec.html#sect-coordinate-frames

6.2. Detection & Measure modules

• match_score: matches with the highest match score and grasp points on objects with the highest
match score are returned first,

• preferred_orientation: matches and grasp points with minimal rotation difference of a chosen
axis (or all axes, when axis is empty) with respect to the preferred TCP orientation are returned
first,

• direction: matches and grasp points with the shortest distance along a defined direction vector
in a given pose_frame are returned first.

• distance_to_point: matches and grasp points with the shortest or farthest (if farthest_first is
true) distance from a point in a given pose_frame are returned first.

If no sorting strategy is set or default sorting is chosen in the Web GUI, sorting is done based on a
combination of match_score and the minimal distance from the camera along the z axis of the preferred
orientation of the TCP.

6.2.7.6 Detection of objects

The CADMatch module requires an object template for object detection. This template contains infor-
mation about the 3D shape of the object and prominent edges that can be visible in the camera images.
CADMatch also supports partial object templates, which contain only a specific part of the object that
can be detected well, e.g., in case of occlusions.

The object detection uses the user-defined pose priors and refines them with the 3D point cloud and
edges in the camera image. For this to work, the objects to detect must be visible in both left and right
camera images.

For triggering the object detection, in general, the following information can be provided to the CAD-
Match module:

• The template ID of the object to be detected in the scene

• The IDs of the pose priors which approximately match the poses of the objects to be detected.

• The coordinate frame in which the poses of the detected objects and the grasp points shall be
returned (ref. Hand-eye calibration, Section 6.2.7.7).

Optionally, further information can be given to the CADMatch module:

• The ID of the load carrier which contains the items to be detected.

• A compartment inside the load carrier where to detect objects (see Load carrier compartments,
Section 6.4.1.3).

• The ID of the 3D region of interest where to search for the load carriers if a load carrier is set.
Otherwise, the ID of the 3D region of interest where to search for the objects.

• The current robot pose in case the camera is mounted on the robot and the chosen coordinate
frame for the poses is external, or the preferred orientation is given in the external frame, or the
chosen region of interest is defined in the external frame.

• Collision detection information: The ID of the gripper to enable collision checking and optionally
a pre-grasp offset to define a pre-grasp position. Details on collision checking are given below in
CollisionCheck (Section 6.2.7.7).

• Data acquisition mode: The user can choose if a new image dataset is acquired for the detection
(default), or if the detection should be performed on the previously used image dataset. This saves
data acquisition time, e.g. in case several detections with different templates have to be run on
the same image.

On the Web GUI the detection can be tested in the Try Out section of the CADMatch module’s page.

The detected objects are returned in a list of matches, sorted according to the selected sorting strategy
(see Setting the sorting strategies, Section 6.2.7.5). Each detected object includes a uuid (Univer-
sally Unique Identifier) and the timestamp of the oldest image that was used to detect it. The pose

Roboception GmbH
Manual: rc_visard_ng

169 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

of a detected object corresponds to the pose of the origin of the object template used for detection.
Furthermore, the matching score is given to indicate the quality of the detection.

If the chosen template also has grasp points attached (see Setting of grasp points, Section 6.2.7.2),
a list of grasps for all objects is returned in addition to the list of detected objects. The grasps are
sorted according to the selected sorting strategy (see Setting the sorting strategies, Section 6.2.7.5).
The grasp poses are given in the desired coordinate frame. There are references between the detected
objects and the grasps via their uuids.

For objects with a discrete symmetry (e.g. prismatic objects), all collision-free symmetries of each grasp
point which are reachable according to the given preferred TCP orientation are returned, ordered by the
given sorting strategy.

For objects with a continuous symmetry (e.g. cylindrical objects), all grasps symmetric to each grasp
point on an object are checked for reachability and collisions, and only the best one according to the
given sorting strategy is returned.

The returned matches are visualized with green edges in the Result image on the CADMatch page
of the Web GUI. Matches that were found to be overlapped by other objects or parts of the scene
(if max_object_overlap is smaller than 1) are visualized with red edges in the result image and the
overlapped area is marked by red stripes. Additionally, matches that were filtered out due to low scores,
overlaps or the maximum number of matches are visualized in the Discarded Matches image.

6.2.7.7 Interaction with other modules

Internally, the CADMatch module depends on, and interacts with other on-board modules as listed
below.

Note: All changes and configuration updates to these modules will affect the performance of the
CADMatch modules.

Camera and depth data

The CADMatch module makes internally use of the following data:

• Rectified images from the Camera module (rc_camera, Section 6.1)

• Disparity, error, and confidence images from the stereo_matching (rc_stereomatching, Section
??). The quality parameter of the stereo matching module must be set to Medium or higher
(see sect-disp-image-parameters, Section ??). We recommend Full or High quality for using
CADMatch.

All processed images are guaranteed to be captured after the module trigger time.

IO and Projector Control

In case the rc_visard NG is used in conjunction with an external random dot projector and the IO and
Projector Control module (rc_iocontrol, Section 6.3.4), it is recommended to connect the projector
to GPIO Out 1 and set the stereo-camera module’s acquisition mode to SingleFrameOut1 (see Stereo
matching parameters, Section ??), so that on each image acquisition trigger an image with and without
projector pattern is acquired.

Alternatively, the output mode for the GPIO output in use should be set to ExposureAlternateActive
(see Description of run-time parameters, Section 6.3.4.1).

In either case, the Auto Exposure Mode exp_auto_mode should be set to AdaptiveOut1 to optimize the
exposure of both images.

Roboception GmbH
Manual: rc_visard_ng

170 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Hand-eye calibration

In case the camera has been calibrated to a robot, the CADMatch module can automatically provide
poses in the robot coordinate frame. For the CADMatch node’s Services (Section 6.2.7.10), the frame
of the output poses can be controlled with the pose_frame argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses provided by the modules are in the camera frame, and no
prior knowledge about the pose of the camera in the environment is required. This means that the
configured regions of interest and load carriers move with the camera. It is the user’s responsibility
to update the configured poses if the camera frame moves (e.g. with a robot-mounted camera).

2. External frame (external). All poses provided by the modules are in the external frame, con-
figured by the user during the hand-eye calibration process. The module relies on the on-
board Hand-eye calibration module (Section 6.3.1) to retrieve the sensor mounting (static or robot
mounted) and the hand-eye transformation. If the mounting is static, no further information is
needed. If the sensor is robot-mounted, the robot_pose is required to transform poses to and
from the external frame.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

All pose_frame values that are not camera or external are rejected.

If the sensor is robot-mounted, the current robot_pose has to be provided depending on the value of
pose_frame, the definition of the preferred TCP orientation and the sorting direction or sorting point:

• If pose_frame is set to external, providing the robot pose is obligatory.

• If the preferred TCP orientation is defined in external, providing the robot pose is obligatory.

• If the sorting direction is defined in external, providing the robot pose is obligatory.

• If the distance-to-point sorting strategy is defined in external, providing the robot pose is obliga-
tory.

• In all other cases, providing the robot pose is optional.

LoadCarrier

The CADMatch module uses the load carrier detection functionality provided by the LoadCarrier module
(rc_load_carrier, Section 6.2.2), with the run-time parameters specified for this module. However, only
one load carrier will be returned and used in case multiple matching load carriers could be found in the
scene. In case multiple load carriers of the same type are visible, a region of interest should be set to
ensure that always the same load carrier is used for the CADMatch module.

CollisionCheck

Collision checking can be easily enabled for grasp computation of the CADMatch module by passing
a collision_detection argument to the detect_object or detect_object_extended service call. It
contains the ID of the used gripper and optionally a pre-grasp offset. The gripper has to be defined in
the GripperDB module (see Setting a gripper , Section 6.4.3.2) and details about collision checking are
given in Collision checking within other modules (Section 6.3.2.2).

Alternatively, grasp points can be assigned individual gripper IDs, and collision checking can be enabled
for all grasp points with gripper IDs by enabling the run-time parameter check_collisions.

If the selected CADMatch template contains a collision geometry and the run-time parameter
check_collisions_with_matches is true, also collisions between the gripper and all other detected
objects (not limited to max_matches) will be checked. The object on which the grasp point to be checked
is located, is excluded from the collision check.

Roboception GmbH
Manual: rc_visard_ng

171 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

If the run-time parameter check_collisions_with_point_cloud is true, also collisions between the
gripper and a watertight version of the point cloud are checked. If this feature is used with suctions
grippers, it should be ensured that the TCP is defined to be outside the gripper geometry, or that
the grasp points are defined above the object surface. Otherwise every grasp will result in a collision
between the gripper and the point cloud.

If the run-time parameter check_collisions_during_retraction is true and a load carrier and a pre-
grasp offset are given, each grasp point will be checked for collisions between the object in the gripper
and the load carrier walls during retraction. This collision check is performed along the full linear trajec-
tory from the grasp point back to the pre-grasp position.

If collision checking is enabled, only grasps which are collision free or could not be checked for collisions
(e.g. because no gripper was given) will be returned. The result image on top of the CADMatch page of
the Web GUI also shows collision-free grasps in green, unchecked grasps in yellow and colliding grasp
points in red. The detected objects which are considered in the collision check are visualized with their
edges in red.

The CollisionCheck module’s run-time parameters affect the collision detection as described in Colli-
sionCheck Parameters (Section 6.3.2.3).

6.2.7.8 Parameters

The CADMatch module is called rc_cadmatch in the REST-API and is represented in the Web
GUI (Section 7.1) under Modules → CADMatch. The user can explore and configure the rc_cadmatch
module’s run-time parameters, e.g. for development and testing, using the Web GUI or the REST-API
interface (Section 7.2).

Parameter overview

This module offers the following run-time parameters:

Table 6.27: The rc_cadmatch module’s run-time parameters
Name Type Min Max Default Description
check_collisions bool false true false Whether to check for collisions

when a gripper is defined for a grasp
check_collisions_during_-
retraction

bool false true false Whether to check for collisions be-
tween the object in the gripper and
the load carrier during retraction

check_collisions_with_-
matches

bool false true true Whether to check for collisions
between gripper and detected
matches

check_collisions_with_-
point_cloud

bool false true false Whether to check for collisions be-
tween gripper and point cloud

edge_max_distance float64 0.5 5.0 2.0 Maximum allowed distance in pix-
els between the template edges and
the detected edges in the image

edge_sensitivity float64 0.05 1.0 0.5 Sensitivity of the edge detector
grasp_filter_orientation_-
threshold

float64 0.0 180.0 45.0 Maximum allowed orientation
change between grasp and pre-
ferred orientation in degrees

max_matches int32 1 30 10 Maximum number of matches
max_object_overlap float64 0.0 1.0 1.0 Maximum fraction of object that is

allowed to be overlapped by some-
thing else

min_score float64 0.05 1.0 0.3 Minimum score for matches
only_highest_priority_-
grasps

bool false true false Whether to return only the highest
priority level grasps

Roboception GmbH
Manual: rc_visard_ng

172 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s CADMatch page. The name in the
Web GUI is given in brackets behind the parameter name and the parameters are listed in the order
they appear in the Web GUI:

max_matches (Maximum Matches)

is the maximum number of objects to detect.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?max_matches=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?max_matches=<value>

min_score (Minimum Score)

is the minimum detection score after refinement. The higher this value, the better
2D edges and 3D point cloud must match the given template.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?min_score=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?min_score=<value>

edge_sensitivity (Edge Sensitivity)

is the sensitivity of the edge detector. The higher the value of this parameter, the
more edges will be used for pose refinement.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?edge_

→˓sensitivity=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?edge_sensitivity=<value>

edge_max_distance (Maximum Edge Distance)

is the maximum allowed distance in pixels between the template edges and the
detected edges in the image during the refinement step.

Roboception GmbH
Manual: rc_visard_ng

173 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?edge_max_

→˓distance=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?edge_max_distance=<value>

grasp_filter_orientation_threshold (Grasp Orientation Threshold)

is the maximum deviation of the TCP’s z axis at the grasp point from the z axis of
the TCP’s preferred orientation in degrees. Only grasp points which are within this
threshold are returned. When set to zero, any deviations are valid.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?grasp_filter_

→˓orientation_threshold=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?grasp_filter_orientation_

→˓threshold=<value>

max_object_overlap (Maximum Object Overlap)

This parameter determines the maximum fraction of a match that is allowed to be overlapped
by other objects or scene parts relative to the camera’s line of sight. Matches with higher
overlap values will be discarded. A value of 1 disables the overlap check. Use this parameter
to ensure to only get grasps on objects that are not overlapped by others.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?max_object_

→˓overlap=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?max_object_overlap=<value>

only_highest_priority_grasps (Only Highest Priority Grasps)

If set to true, only grasps with the highest priority will be returned. If collision checking is
enabled, only the collision-free grasps among the group of grasps with the highest priority
are returned. This can save computation time and reduce the number of grasps to be parsed
on the application side.

Without collision checking, only grasps of highest priority are returned.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?only_highest_

→˓priority_grasps=<value>

Roboception GmbH
Manual: rc_visard_ng

174 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?only_highest_priority_grasps=
→˓<value>

check_collisions (Check Collisions)

If this parameter is enabled, collision checking will be performed for all grasps
which have a gripper ID assigned, even when no default gripper is given in the
detect_object or detect_object_extended service call. If a load carrier is used,
the collision check will always be performed between the gripper and the load car-
rier. Collision checking with the point cloud and other matches is only performed
when the corresponding runtime parameters are enabled.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?check_

→˓collisions=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?check_collisions=<value>

check_collisions_with_matches (Check Collisions with Matches)

This parameter is only used when collision checking is enabled by passing a grip-
per to the detect_object or detect_object_extended service call or by enabling
the check_collisions runtime parameter. If check_collisions_with_matches is
set to true, all grasp points will be checked for collisions between the gripper and
all other detected objects (not limited to max_matches), and only grasp points at
which the gripper would not collide with any other detected object will be returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?check_

→˓collisions_with_matches=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?check_collisions_with_matches=
→˓<value>

check_collisions_with_point_cloud (Check Collisions with Point Cloud)

This parameter is only used when collision checking is enabled by
passing a gripper to the detect_object or detect_object_extended ser-
vice call or by enabling the check_collisions runtime parameter. If
check_collisions_with_point_cloud is set to true, all grasp points will be
checked for collisions between the gripper and a watertight version of the point
cloud, and only grasp points at which the gripper would not collide with this point
cloud will be returned.

Via the REST-API, this parameter can be set as follows.

API version 2

Roboception GmbH
Manual: rc_visard_ng

175 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?check_

→˓collisions_with_point_cloud=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?check_collisions_with_point_

→˓cloud=<value>

check_collisions_during_retraction (Check Collisions during Retraction)

This parameter is only used when collision checking is enabled by pass-
ing a gripper to the detect_object or detect_object_extended service
call or by enabling the check_collisions runtime parameter. When
check_collisions_during_retraction is enabled and a load carrier and a pre-
grasp offset are given, each grasp point will be checked for collisions between
the object in the gripper and the load carrier walls during retraction. This collision
checking is performed along the full linear trajectory from the grasp point back to
the pre-grasp position. Only collision-free grasp points will be returned.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_cadmatch/parameters?check_

→˓collisions_during_retraction=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/parameters?check_collisions_during_

→˓retraction=<value>

6.2.7.9 Status values

The rc_cadmatch module reports the following status values:

Table 6.28: The rc_cadmatch module’s status values
Name Description
data_acquisition_time Time in seconds required by the last active service to acquire

images
last_timestamp_processed The timestamp of the last processed dataset
last_request_timestamp The timestamp of the last detection request
load_carrier_detection_time Processing time of the last load carrier detection in seconds
object_detection_time Processing time of the last last object detection in seconds
processing_time Processing time of the last detection (including load carrier

detection) in seconds
state The current state of the rc_cadmatch node

The reported state can take one of the following values.

Table 6.29: Possible states of the CADMatch module
State name Description
IDLE The module is idle.
RUNNING The module is running and ready for load carrier detection and object detection.
FATAL A fatal error has occurred.

Roboception GmbH
Manual: rc_visard_ng

176 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

6.2.7.10 Services

The user can explore and call the rc_cadmatch module’s services, e.g. for development and testing,
using the REST-API interface (Section 7.2) or the rc_visard NG Web GUI (Section 7.1).

The CADMatch modules offer the following services.

detect_object

Triggers the detection of objects as described in Detection of objects (Section 6.2.7.6) based
on an object template.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_cadmatch/services/detect_object

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/detect_object

Request

Required arguments:

pose_frame: see Hand-eye calibration (Section 6.2.7.7).

template_id: the ID of the template to be detected.

pose_prior_ids: IDs of the pose priors for the items to be detected.

Potentially required arguments:

robot_pose: see Hand-eye calibration (Section 6.2.7.7).

Optional arguments:

load_carrier_id: ID of the load carrier which contains the items to be detected.

load_carrier_compartment: compartment inside the load carrier where to detect
items (see Load carrier compartments, Section 6.4.1.3).

region_of_interest_id: if load_carrier_id is set, ID of the 3D region of interest
where to search for the load carriers. Otherwise, ID of the 3D region of interest
where to search for the objects.

collision_detection: see Collision checking within other modules (Section
6.3.2.2).

data_acquisition_mode: if set to CAPTURE_NEW (default), a new image dataset will
be used for the detection. If set to USE_LAST the previous dataset will be used for
the detection.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

177 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

}
},
"data_acquisition_mode": "string",
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"pose_prior_ids": [
"string"

],
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"template_id": "string"

}
}

Response

grasps: list of grasps on the detected objects, ordered according to the chosen sorting
strategy. The match_uuid gives the reference to the detected object in matches this grasp
belongs to. The list of returned grasps will be trimmed to the 100 best grasps if more reach-
able grasps are found. Each grasp contains a flag collision_checked and a gripper_id
(see Collision checking within other modules, Section 6.3.2.2).

load_carriers: list of detected load carriers.

matches: list of detected objects matching the template. The matches are ordered accord-
ing to the chosen sorting strategy. The score indicates how well the object matches the
template. The grasp_uuids refer to the grasps in grasps which are reachable on this object.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

Roboception GmbH
Manual: rc_visard_ng

178 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

The definition for the response with corresponding datatypes is:

{
"name": "detect_object",
"response": {
"grasps": [

{
"collision_checked": "bool",
"gripper_id": "string",
"id": "string",
"match_uuid": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"priority": "int8",
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"load_carriers": [
{

"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

179 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"matches": [

{
"grasp_uuids": [
"string"

],
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"score": "float32",
"template_id": "string",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

detect_object_extended

Triggers the detection of objects in the same way as detect_object, but returns the match
information for each grasp directly instead of as a separate list. This allows for easier pars-
ing, e.g. when the match pose for each grasp is required for placing the object.

Details

This service can be called as follows.

Roboception GmbH
Manual: rc_visard_ng

180 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_cadmatch/services/detect_object_extended

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/detect_object_extended

Request

See detect_object service.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"data_acquisition_mode": "string",
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"pose_prior_ids": [
"string"

],
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

181 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

},
"template_id": "string"

}
}

Response

grasps: list of grasps on the detected objects, ordered according to the chosen sorting
strategy. Each grasp contains a match field with information about the detected object, e.g.
its pose. The list of returned grasps will be trimmed to the 100 best grasps if more reachable
grasps are found. Each grasp contains a flag collision_checked and a gripper_id (see
Collision checking within other modules, Section 6.3.2.2).

load_carriers: list of detected load carriers.

timestamp: timestamp of the image set the detection ran on.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "detect_object_extended",
"response": {

"grasps": [
{

"collision_checked": "bool",
"gripper_id": "string",
"id": "string",
"match": {

"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"score": "float32",
"template_id": "string",
"uuid": "string"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

182 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"priority": "int8",
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

Roboception GmbH
Manual: rc_visard_ng

183 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

set_preferred_orientation

Persistently stores the preferred orientation of the TCP to compute the reachability of
the grasps, which is used for filtering and, optionally, sorting the grasps returned by the
detect_object and detect_object_extended service (see Setting the preferred orientation
of the TCP, Section 6.2.7.4).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_cadmatch/services/set_preferred_

→˓orientation

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_preferred_orientation

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_preferred_orientation",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_preferred_orientation

Returns the preferred orientation of the TCP to compute the reachability of the grasps, which
is used for filtering and, optionally, sorting the grasps returned by the detect_object and
detect_object_extended service (see Setting the preferred orientation of the TCP, Section
6.2.7.4).

Details

This service can be called as follows.

API version 2

Roboception GmbH
Manual: rc_visard_ng

184 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

PUT http://<host>/api/v2/pipelines/0/nodes/rc_cadmatch/services/get_preferred_

→˓orientation

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_preferred_orientation

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_preferred_orientation",
"response": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_sorting_strategies

Persistently stores the sorting strategy for sorting the grasps and matches returned by the
detect_object and detect_object_extended service (see Detection of objects, Section
6.2.7.6).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_cadmatch/services/set_sorting_strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_sorting_strategies

Request

Only one strategy may have a weight greater than 0. If all weight values are set to 0, the
module will use the default sorting strategy.

If the weight for direction is set, the vector must contain the direction vector and
pose_frame must be either camera or external.

If the weight for distance_to_point is set, point must contain the sorting point and
pose_frame must be either camera or external.

If the weight for preferred_orientation is set, the axis can be set to x, y or z to consider
only rotational differences between the respective axes. If axis is empty, the full orientation
difference will be used for sorting.

Roboception GmbH
Manual: rc_visard_ng

185 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"direction": {
"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"weight": "float64"

},
"gravity": {
"weight": "float64"

},
"match_score": {

"weight": "float64"
},
"preferred_orientation": {
"axis": "string",
"weight": "float64"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_sorting_strategies",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_sorting_strategies

Returns the sorting strategy for sorting the grasps and matches returned by the
detect_object and detect_object_extended service (see Detection of objects, Section
6.2.7.6).

Details

This service can be called as follows.

API version 2

Roboception GmbH
Manual: rc_visard_ng

186 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

PUT http://<host>/api/v2/pipelines/0/nodes/rc_cadmatch/services/get_sorting_strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_sorting_strategies

Request

This service has no arguments.

Response

All weight values are 0 when the module uses the default sorting strategy.

The definition for the response with corresponding datatypes is:

{
"name": "get_sorting_strategies",
"response": {
"direction": {

"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"distance_to_point": {
"farthest_first": "bool",
"point": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"weight": "float64"

},
"gravity": {
"weight": "float64"

},
"match_score": {

"weight": "float64"
},
"preferred_orientation": {
"axis": "string",
"weight": "float64"

},
"return_code": {
"message": "string",
"value": "int16"

}
}

}

start

Starts the module. If the command is accepted, the module moves to state RUNNING.

Details

The current_state value in the service response may differ from RUNNING if the state tran-
sition is still in process when the service returns.

Roboception GmbH
Manual: rc_visard_ng

187 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_cadmatch/services/start

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/start

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

stop

Stops the module. If the command is accepted, the module moves to state IDLE.

Details

The current_state value in the service response may differ from IDLE if the state transition
is still in process when the service returns.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_cadmatch/services/stop

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/stop

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "stop",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

Roboception GmbH
Manual: rc_visard_ng

188 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

reset_defaults

Resets all parameters of the module to its default values, as listed in above table. Also resets
preferred orientation and sorting strategies. The reset does not apply to templates.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_cadmatch/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.2.7.11 Internal services

The following services for configuring grasps and pose priors can change in future without notice. Set-
ting, retrieving and deleting grasps and pose priors is recommended to be done via the Web GUI.

set_grasp

Persistently stores a grasp for the given object template on the rc_visard NG. All configured
grasps are persistent over firmware updates and rollbacks.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_cadmatch/services/set_grasp

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_grasp

Request

Details for the definition of the grasp type are given in Setting of grasp points (Section
6.2.7.2).

The definition for the request arguments with corresponding datatypes is:

Roboception GmbH
Manual: rc_visard_ng

189 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

{
"args": {

"grasp": {
"gripper_id": "string",
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {

"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"template_id": "string"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_grasp",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_all_grasps

Replaces the list of grasps for the given object template on the rc_visard NG.

Roboception GmbH
Manual: rc_visard_ng

190 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_cadmatch/services/set_all_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_all_grasps

Request

Details for the definition of the grasp type are given in Setting of grasp points (Section
6.2.7.2).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasps": [
{

"gripper_id": "string",
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"template_id": "string"

}
],
"template_id": "string"

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

191 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_all_grasps",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_grasps

Returns all configured grasps which have the requested grasp_ids and belong to the re-
quested template_ids.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_cadmatch/services/get_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_grasps

Request

If no grasp_ids are provided, all grasps belonging to the requested template_ids are re-
turned. If no template_ids are provided, all grasps with the requested grasp_ids are re-
turned. If neither IDs are provided, all configured grasps are returned.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_grasps",
"response": {
"grasps": [

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

192 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

{
"gripper_id": "string",
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"stroke_per_finger_approach_mm": "float64",
"stroke_per_finger_grasp_mm": "float64",
"template_id": "string"

}
],
"return_code": {

"message": "string",
"value": "int16"

}
}

}

delete_grasps

Deletes all grasps with the requested grasp_ids that belong to the requested template_ids.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_cadmatch/services/delete_grasps

API version 1 (deprecated)

Roboception GmbH
Manual: rc_visard_ng

193 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/delete_grasps

Request

If no grasp_ids are provided, all grasps belonging to the requested template_ids are
deleted. The template_ids list must not be empty.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "delete_grasps",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_symmetric_grasps

Returns all grasps that are symmetric to the given grasp.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_cadmatch/services/get_symmetric_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_symmetric_grasps

Request

Details for the definition of the grasp type are given in Setting of grasp points (Section
6.2.7.2).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasp": {
"pose": {

"orientation": {

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

194 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"replication": {

"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}
}

}

Response

The first grasp in the returned list is the one that was passed with the service call. If the
object template does not have an exact symmetry, only the grasp passed with the service
call will be returned. If the object template has a continuous symmetry (e.g. a cylindrical
object), only 12 equally spaced sample grasps will be returned.

Details for the definition of the grasp type are given in Setting of grasp points (Section
6.2.7.2).

The definition for the response with corresponding datatypes is:

{
"name": "get_symmetric_grasps",
"response": {

"grasps": [
{

"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

195 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

}
},
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}
],
"return_code": {

"message": "string",
"value": "int16"

}
}

}

set_pose_prior

Persistently stores a pose prior for the given object template on the rc_visard NG. All config-
ured pose priors are persistent over firmware updates and rollbacks.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_cadmatch/services/set_pose_prior

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_pose_prior

Request

Details for the definition of the pose_prior type are given in Setting of pose priors (Section
6.2.7.3).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose_prior": {
"id": "string",
"pose": {

"orientation": {
"w": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

196 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"template_id": "string"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_pose_prior",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_all_pose_priors

Replaces the list of pose priors for the given object template on the rc_visard NG.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_cadmatch/services/set_all_pose_priors

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/set_all_pose_priors

Request

Details for the definition of the pose_prior type are given in Setting of pose priors (Section
6.2.7.3).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose_priors": [
{

"id": "string",
"pose": {
"orientation": {
"w": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

197 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"template_id": "string"

}
],
"template_id": "string"

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_all_pose_priors",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_pose_priors

Returns all configured pose priors which have the requested pose_prior_ids and belong to
the requested template_ids.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_cadmatch/services/get_pose_priors

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/get_pose_priors

Request

If no pose_prior_ids are provided, all pose priors belonging to the requested template_ids
are returned. If no template_ids are provided, all pose priors with the requested
pose_prior_ids are returned. If neither IDs are provided, all configured pose priors are
returned.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose_prior_ids": [

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

198 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

(continued from previous page)

"string"
],
"template_ids": [

"string"
]

}
}

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_pose_priors",
"response": {
"pose_priors": [
{

"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"template_id": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_pose_priors

Deletes all pose priors with the requested pose_prior_ids that belong to the requested
template_ids.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_cadmatch/services/delete_pose_priors

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_cadmatch/services/delete_pose_priors

Request

Roboception GmbH
Manual: rc_visard_ng

199 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

If no pose_prior_ids are provided, all pose priors belonging to the requested template_ids
are deleted. The template_ids list must not be empty.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose_prior_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "delete_pose_priors",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.2.7.12 Return codes

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate
that the service failed. Positive return_code values indicate that the service succeeded with additional
information. The smaller value is selected in case a service has multiple return_code values, but all
messages are appended in the return_code message.

The following table contains a list of common codes:

Roboception GmbH
Manual: rc_visard_ng

200 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

Table 6.30: Return codes of the CADMatch services
Code Description

0 Success
-1 An invalid argument was provided.
-2 An internal error occurred.
-3 An internal timeout occurred.
-4 Data acquisition took longer than allowed.
-8 Not applicable, stereo quality must be at least Medium.
-9 No valid license for the module.

-10 New element could not be added as the maximum storage capacity of load carriers or
regions of interest has been exceeded.

-11 Sensor not connected, not supported or not ready.
-12 Resource busy, e.g. when trigger_dump is called too frequently.
10 The maximum storage capacity of load carriers or regions of interest has been reached.
11 Existing data was overwritten.
100 The requested load carrier was not detected in the scene.
101 None of the detected grasps is reachable.
102 The detected load carrier is empty.
103 All detected grasps are in collision.
106 The list of returned grasps has been trimmed to the 100 best grasps.
110 Hints for setting up the application, e.g. reducing the distance from the camera, setting a

region of interest.
113 No gripper was found for collision checking.
114 Collision checking during retraction was skipped, e.g. because no load carrier or no

pre-grasp offset were given.
151 The object template has a continuous symmetry.
152 The objects are outside the given region of interest, outside the load carrier or outside the

image.
153 No edges could be detected in the camera image. Check the Edge Sensitivity.
999 Additional hints for application development

6.2.7.13 Template API

For template upload, download, listing and removal, special REST-API endpoints are provided. Tem-
plates can also be uploaded, downloaded and removed via the Web GUI. The templates include the
grasp points and pose priors, if grasp points or pose priors have been configured. Up to 50 templates
can be stored persistently on the rc_visard NG.

GET /templates/rc_cadmatch
Get list of all rc_cadmatch templates.

Template request

GET /api/v2/templates/rc_cadmatch HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": "string"
}

]

Response Headers

Roboception GmbH
Manual: rc_visard_ng

201 Rev: 26.01.3
Status: Jan 30, 2026

6.2. Detection & Measure modules

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of Template)

• 404 Not Found – node not found

Referenced Data Models

• Template (Section 7.2.3)

GET /templates/rc_cadmatch/{id}
Get a rc_cadmatch template. If the requested content-type is application/octet-stream, the tem-
plate is returned as file.

Template request

GET /api/v2/templates/rc_cadmatch/<id> HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)

Response Headers

• Content-Type – application/json application/ubjson application/octet-stream

Status Codes

• 200 OK – successful operation (returns Template)

• 404 Not Found – node or template not found

Referenced Data Models

• Template (Section 7.2.3)

PUT /templates/rc_cadmatch/{id}
Create or update a rc_cadmatch template.

Template request

PUT /api/v2/templates/rc_cadmatch/<id> HTTP/1.1
Accept: multipart/form-data application/json

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)

Roboception GmbH
Manual: rc_visard_ng

202 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. Configuration modules

Form Parameters

• file – template file (required)

Request Headers

• Accept – multipart/form-data application/json

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns Template)

• 400 Bad Request – Template is not valid or max number of templates reached

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-
ule.

• 404 Not Found – node or template not found

• 413 Request Entity Too Large – Template too large

Referenced Data Models

• Template (Section 7.2.3)

DELETE /templates/rc_cadmatch/{id}
Remove a rc_cadmatch template.

Template request

DELETE /api/v2/templates/rc_cadmatch/<id> HTTP/1.1
Accept: application/json application/ubjson

Parameters

• id (string) – id of the template (required)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-
ule.

• 404 Not Found – node or template not found

6.3 Configuration modules

The rc_visard NG provides several configuration modules which enable the user to configure the
rc_visard NG for specific applications.

The configuration modules are:

• Hand-eye calibration (rc_hand_eye_calibration, Section 6.3.1) enables the user to calibrate
the camera with respect to a robot, either via the Web GUI or the REST-API.

Roboception GmbH
Manual: rc_visard_ng

203 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. Configuration modules

• CollisionCheck (rc_collision_check, Section 6.3.2) provides an easy way to check if a gripper
is in collision.

• Camera calibration (rc_stereocalib, Section 6.3.3) enables the user to check and perform
camera calibration via the WEB GUI (Section 7.1).

• IO and Projector Control (rc_iocontrol, Section 6.3.4) provides control over the camera’s
general purpose inputs and outputs with special modes for controlling an external random
dot projector.

6.3.1 Hand-eye calibration

For applications, in which the camera is integrated into one or more robot systems, it needs to be
calibrated w.r.t. some robot reference frames. For this purpose, the rc_visard NG is shipped with an on-
board calibration routine called the hand-eye calibration module. It is a base module which is available
on every rc_visard NG.

Note: The implemented calibration routine is completely agnostic about the user-defined robot frame
to which the camera is calibrated. It might be a robot’s end-effector (e.g., flange or tool center point)
or any point on the robot structure. The method’s only requirement is that the pose (i.e., translation
and rotation) of this robot frame w.r.t. a user-defined external reference frame (e.g., world or robot
mounting point) is exactly observable by the robot controller and can be reported to the calibration
module.

The Calibration routine (Section 6.3.1.3) itself is an easy-to-use multi-step procedure using a calibration
grid which can be obtained from Roboception.

6.3.1.1 Calibration interfaces

The following two interfaces are offered to conduct hand-eye calibration:

1. All services and parameters of this module required to conduct the hand-eye calibration program-
matically are exposed by the rc_visard NG’s REST-API interface (Section 7.2). The respective
node name of this module is rc_hand_eye_calibration and the respective service calls are doc-
umented Services (Section 6.3.1.5).

Note: The described approach requires a network connection between the rc_visard NG and
the robot controller to pass robot poses from the controller to the rc_visard NG’s calibration
module.

2. For use cases where robot poses cannot be passed programmatically to the rc_visard NG’s hand-
eye calibration module, the Web GUI’s Hand-Eye Calibration page under Configuration

offers a guided process to conduct the calibration routine manually.

Note: During the process, the described approach requires the user to manually enter into
the Web GUI robot poses, which need to be accessed from the respective robot-teaching or
handheld device.

6.3.1.2 Camera mounting

As illustrated in Fig. 6.14 and Fig. 6.16, two different use cases w.r.t. to the mounting of the camera
generally have to be considered:

a. The camera is mounted on the robot, i.e., it is mechanically fixed to a robot link (e.g., at its flange
or a flange-mounted tool), and hence moves with the robot.

Roboception GmbH
Manual: rc_visard_ng

204 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

b. The camera is not mounted on the robot but is fixed to a table or other place in the robot’s vicinity
and remains at a static position w.r.t. the robot.

While the general Calibration routine (Section 6.3.1.3) is very similar in both use cases, the calibration
process’s output, i.e., the resulting calibration transform, will be semantically different, and the fixture of
the calibration grid will also differ.

Calibration with a robot-mounted camera When calibrating a robot-mounted camera with the robot,
the calibration grid has to be secured in a static position w.r.t. the robot, e.g., on a table or some
other fixed-base coordinate system as sketched in Fig. 6.14.

Warning: It is extremely important that the calibration grid does not move during step 2
of the Calibration routine (Section 6.3.1.3). Securely fixing its position to prevent unintended
movements such as those caused by vibrations, moving cables, or the like is therefore strongly
recommended.

The result of the calibration (step 3 of the Calibration routine, Section 6.3.1.3) is a pose Trobot
camera de-

scribing the (previously unknown) relative positional and rotational transformation from the camera
frame into the user-selected robot frame such that

probot = Rrobot
camera · pcamera + trobot

camera , (6.1)

where probot = (𝑥, 𝑦, 𝑧)𝑇 is a 3D point with its coordinates expressed in the robot frame, pcamera is
the same point represented in the camera coordinate frame, and Rrobot

camera as well as trobot
camera are the

corresponding 3×3 rotation matrix and 3×1 translation vector of the pose Trobot
camera, respectively. In

practice, in the calibration result and in the provided robot poses, the rotation is defined by Euler
angles or as quaternion instead of a rotation matrix (see Pose formats, Section 13.1).

robot

ext

camera

T robot
ext

Tcamera
robot

calibration grid

Fig. 6.14: Important frames and transformations for calibrating a camera that is mounted on a general
robot. The camera is mounted with a fixed relative position to a user-defined robot frame (e.g., flange
or TCP). It is important that the pose Text

robot of this robot frame w.r.t. a user-defined external reference
frame ext is observable during the calibration routine. The result of the calibration process is the de-
sired calibration transformation Trobot

camera, i.e., the pose of the camera frame within the user-defined robot
frame.

Additional user input is required if the movement of the robot is constrained and the robot can
rotate the Tool Center Point (TCP) only around one axis. This is typically the case for robots with
four Degrees Of Freedom (4DOF) that are often used for palletizing tasks. In this case, the user
must specify which axis of the robot frame is the rotation axis of the TCP. Further, the signed offset
from the TCP to the camera coordinate system along the TCP rotation axis has to be provided.
Fig. 6.15 illustrates the situation.

Roboception GmbH
Manual: rc_visard_ng

205 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

For the rc_visard NG, the camera coordinate system is located in the optical center of the left
camera. The approximate location is given in section Coordinate frames (Section 3.7).

robot

ext

camera

T robot
ext Tcamera

robot

calibration grid

TCP rotation axis

TCP offset

Fig. 6.15: In case of a 4DOF robot, the TCP rotation axis and the offset from the TCP to the camera
coordinate system along the TCP rotation axis must be provided. In the illustrated case, this offset is
negative.

Calibration with a statically-mounted camera In use cases where the camera is positioned statically
w.r.t. the robot, the calibration grid needs to be mounted to the robot as shown for example in Fig.
6.16 and Fig. 6.17.

Note: The hand-eye calibration module is completely agnostic about the exact mounting and
positioning of the calibration grid w.r.t. the user-defined robot frame. That means, the relative
positioning of the calibration grid to that frame neither needs to be known, nor it is relevant for
the calibration routine, as shown in Fig. 6.17.

Warning: It is extremely important that the calibration grid is attached securely to the robot
such that it does not change its relative position w.r.t. the user-defined robot frame during step
2 of the Calibration routine (Section 6.3.1.3).

In this use case, the result of the calibration (step 3 of the Calibration routine, Section 6.3.1.3) is the
pose Text

camera describing the (previously unknown) relative positional and rotational transformation
between the camera frame and the user-selected external reference frame ext such that

pext = Rext
camera · pcamera + text

camera , (6.2)

where pext = (𝑥, 𝑦, 𝑧)𝑇 is a 3D point with its coordinates expressed in the external reference frame
ext, pcamera is the same point represented in the camera coordinate frame, and Rext

camera as well as
text

camera are the corresponding 3× 3 rotation matrix and 3× 1 translation vector of the pose Text
camera,

respectively. In practice, in the calibration result and in the provided robot poses, the rotation is
defined by Euler angles or as quaternion instead of a rotation matrix (see Pose formats, Section
13.1).

Roboception GmbH
Manual: rc_visard_ng

206 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

robot

ext

camera

T robot
ext Tcamera

ext

calibration

grid

Fig. 6.16: Important frames and transformations for calibrating a statically mounted camera: The latter
is mounted with a fixed position relative to a user-defined external reference frame ext (e.g., the world
coordinate frame or the robot’s mounting point). It is important that the pose Text

robot of the user-defined
robot frame w.r.t. this frame is observable during the calibration routine. The result of the calibration
process is the desired calibration transformation Text

camera, i.e., the pose of the camera frame in the user-
defined external reference frame ext.

robot

camera

robot

camera

Fig. 6.17: Alternate mounting options for attaching the calibration grid to the robot

Additional user input is required if the movement of the robot is constrained and the robot can
rotate the Tool Center Point (TCP) only around one axis. This is typically the case for robots with
four Degrees Of Freedom (4DOF) that are often used for palletizing tasks. In this case, the user
must specify which axis of the robot frame is the rotation axis of the TCP. Further, the signed
offset from the TCP to the visible surface of the calibration grid along the TCP rotation axis has to
be provided. The grid must be mounted such that the TCP rotation axis is orthogonal to the grid.
Fig. 6.18 illustrates the situation.

Roboception GmbH
Manual: rc_visard_ng

207 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

ext

camera

T robot
ext

Tcamera
ext

calibration
grid

robot

TCP rotation axis

TCP offset

Fig. 6.18: In case of a 4DOF robot, the TCP rotation axis and the offset from the TCP to the visible
surface of the grid along the TCP rotation axis must be provided. In the illustrated case, this offset is
negative.

6.3.1.3 Calibration routine

The hand-eye calibration can be performed manually using the Web GUI (Section 7.1) or programmat-
ically via the REST-API interface (Section 7.2). The general calibration routine will be described by
following the steps of the hand-eye calibration wizard provided on the Web GUI. This wizard can be
found in the rc_visard NG’s Web GUI under Configuration → Hand-Eye Calibration. References to the
corresponding REST-API calls are provided at the appropriate places.

Step 1: Hand-Eye Calibration Status

The starting page of the hand-eye calibration wizard shows the current status of the hand-eye calibra-
tion. If a hand-eye calibration is saved on the rc_visard NG, the calibration transformation is displayed
here (see Fig. 6.19).

Roboception GmbH
Manual: rc_visard_ng

208 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

Fig. 6.19: Current status of the hand-eye calibration in case a hand-eye calibration is saved

To query the hand-eye calibration status programmatically, the module’s REST-API offers the
get_calibration service call (see Services, Section 6.3.1.5). An existing hand-eye calibration can be
removed by pressing Remove Calibration or using remove_calibration in the REST-API (see Services,
Section 6.3.1.5).

To start a new hand-eye calibration, click on Perform Hand-Eye Calibration or Next.

Step 2: Checking Grid Detection

To achieve good calibration results, the images should be well exposed so that the calibration grid can be
detected accurately and reliably. In this step, the grid detection can be checked and the camera settings
can be adjusted if necessary. In case parts of the calibration grid are overexposed, the respective
squares of the calibration grid will be highlighted in red. A successful grid detection is visualized by
green check marks on every square of the calibration grid and a thick green border around the grid as
shown in Fig. 6.20.

Roboception GmbH
Manual: rc_visard_ng

209 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

Fig. 6.20: Checking the calibration grid detection

Step 3: Record Poses

In this step, the user records images of the calibration grid at several different robot poses. These poses
must each ensure that the calibration grid is completely visible in the left camera image. Furthermore,
the robot poses need to be selected properly to achieve a variety of different perspectives for the camera
to perceive the calibration grid. Fig. 6.21 shows a schematic recommendation of four different grid
positions which should be recorded from a close and a far point of view, resulting in eight images for the
calibration.

Roboception GmbH
Manual: rc_visard_ng

210 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

Fig. 6.21: Recommended views on the calibration grid during the calibration procedure. In case of a
4DOF robot, other views have to be chosen, which should be as different as possible.

Warning: Calibration quality, i.e., the accuracy of the calculated calibration result, depends on the
calibration-grid views provided. The more diverse the perspectives are, the better is the calibra-
tion. Choosing very similar views, i.e., varying the robot pose only slightly before recording a new
calibration pose, may lead to inaccurate estimation of the desired calibration transformation.

After the robot reaches each calibration pose, the corresponding pose Text
robot of the user-defined robot

frame in the user-defined external reference frame ext needs to be reported to the hand-eye calibra-
tion module. For this purpose, the module offers different slots to store the reported poses and the
corresponding left camera images. All filled slots will then be used to calculate the desired calibra-
tion transformation between the camera frame and either the user-defined robot frame (robot-mounted
camera) or the user-defined external reference frame ext (static camera).

In the Web GUI, the user can choose between many different pose formats for providing the calibration
poses (see Pose formats, Section 13.1). When calibrating using the REST-API, the poses are always
given in XYZ+quaternion. The Web GUI offers eight slots (Close View 1, Close View 2, etc.) for the user
to fill manually with robot poses. Next to each slot, a figure suggests a respective dedicated viewpoint
on the grid. For each slot, the robot should be operated to achieve the suggested view.

Roboception GmbH
Manual: rc_visard_ng

211 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

Fig. 6.22: Filling the first slot in the hand-eye calibration process for a statically mounted camera

To record a calibration pose, click on Set Pose for the respective slot and enter the robot frame’s pose
into the respective text fields. The pose is then stored with the corresponding camera image by clicking
the Take Picture to Proceed button. This will save the calibration pose in the respective slot.

To transmit the poses programmatically, the module’s REST-API offers the set_pose service call (see
Services, Section 6.3.1.5).

Note: The user’s acquisition of robot pose data depends on the robot model and manufacturer – it
might be read from a teaching or handheld device, which is shipped with the robot.

Warning: Please be careful to correctly and accurately enter the values; even small variations or
typos may lead to calibration-process failure.

The Web GUI displays the currently saved poses (only with slot numbers from 0 to 7) with their camera

Roboception GmbH
Manual: rc_visard_ng

212 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

images and also allows to delete them by clicking Delete Pose to remove a single pose, or clicking
Clear all Poses to remove all poses. In the REST-API the currently stored poses can be retrieved
via get_poses and removed via delete_poses for single poses or reset_calibration for removing all
poses (see Services, Section 6.3.1.5).

When at least four poses are set, the user can continue to the computation of the calibration result by
pressing Next.

Note: To successfully calculate the hand-eye calibration transformation, at least four different robot
calibration poses need to be reported and stored in slots. However, to prevent errors induced by
possible inaccurate measurements, at least eight calibration poses are recommended.

Step 4: Compute Calibration

Before computing the calibration result, the user has to provide the correct calibration parameters.
These include the exact calibration grid dimensions and the sensor mounting type. The Web GUI also
offers settings for calibrating 4DOF robots. In this case, the rotation axis, as well as the offset from
the TCP to the camera coordinate system (robot-mounted camera) or grid surface (statically mounted
camera) must be given. For the REST-API, the respective parameters are listed in Parameters (Section
6.3.1.4).

Fig. 6.23: Defining hand-eye calibration parameters and computing the calibration result via the
rc_visard NG’s Web GUI

Roboception GmbH
Manual: rc_visard_ng

213 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

When the parameters are correct, the desired calibration transformation can be computed from the
collected poses and camera images by clicking Compute Calibration. The REST-API offers this func-
tionality via the calibrate service call (see Services, Section 6.3.1.5).

Depending on the way the camera is mounted, the calibration result contains the transformation (i.e.,
the pose) between the camera frame and either the user-defined robot frame (robot-mounted cam-
era) or the user-defined external reference frame ext (statically mounted camera); see Camera mount-
ing (Section 6.3.1.2).

To enable users to judge the quality of the resulting calibration transformation, the translational and
rotational calibration errors are reported, which are computed from the variance of the calibration result.

If the calibration error is not acceptable, the user can change the calibration parameters and recompute
the result, or return to step 3 of the calibration procedure and add more poses or update poses.

To save the calibration result, press Save Calibration or use the REST-API save_calibration service
call (see Services, Section 6.3.1.5).

6.3.1.4 Parameters

The hand-eye calibration module is called rc_hand_eye_calibration in the REST-API and is repre-
sented in the Web GUI (Section 7.1) under Configuration → Hand-Eye Calibration. The user can change
the calibration parameters there or use the REST-API interface (Section 7.2).

Parameter overview

This module offers the following run-time parameters:

Table 6.31: The rc_hand_eye_calibration module’s run-time pa-
rameters

Name Type Min Max Default Description
grid_height float64 0.0 10.0 0.0 The height of the calibration pattern

in meters
grid_width float64 0.0 10.0 0.0 The width of the calibration pattern

in meters
robot_mounted bool false true true Whether the camera is mounted on

the robot
tag_ids string - - - Optional, comma separated list of

AprilTag IDs that will be calibrated
too

tcp_offset float64 -10.0 10.0 0.0 Offset from TCP along
tcp_rotation_axis

tcp_rotation_axis int32 -1 2 -1 -1 for off, 0 for x, 1 for y, 2 for z

Description of run-time parameters

The parameter descriptions are given with the corresponding Web GUI names in brackets.

grid_width (Width)

Width of the calibration grid in meters. The width should be given with a very high accuracy,
preferably with sub-millimeter accuracy.

Via the REST-API, this parameter can be set as follows.

API version 2

Roboception GmbH
Manual: rc_visard_ng

214 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/parameters?
→˓grid_width=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?grid_width=<value>

grid_height (Height)

Height of the calibration grid in meters. The height should be given with a very high accuracy,
preferably with sub-millimeter accuracy.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/parameters?
→˓grid_height=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?grid_height=<value>

robot_mounted (Sensor Mounting)

If set to true, the camera is mounted on the robot. If set to false, the camera is mounted
statically and the calibration grid is mounted on the robot.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/parameters?
→˓robot_mounted=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?robot_mounted=<value>

tcp_offset (TCP Offset)

The signed offset from the TCP to the camera coordinate system (robot-mounted sensor) or
the visible surface of the calibration grid (statically mounted sensor) along the TCP rotation
axis in meters. This is required if the robot’s movement is constrained and it can rotate its
TCP only around one axis (e.g., 4DOF robot).

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/parameters?
→˓tcp_offset=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?tcp_offset=<value>

Roboception GmbH
Manual: rc_visard_ng

215 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

tcp_rotation_axis (TCP Rotation Axis)

The axis of the robot frame around which the robot can rotate its TCP. 0 is used for X, 1 for Y
and 2 for the Z axis. This is required if the robot’s movement is constrained and it can rotate
its TCP only around one axis (e.g., 4DOF robot). -1 means that the robot can rotate its TCP
around two independent rotation axes. tcp_offset is ignored in this case.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/parameters?
→˓tcp_rotation_axis=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?tcp_rotation_axis=
→˓<value>

6.3.1.5 Services

The REST-API service calls offered to programmatically conduct the hand-eye calibration and to restore
this module’s parameters are explained below.

get_calibration

returns the hand-eye calibration currently stored on the rc_visard NG.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/get_

→˓calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/get_calibration

Request

This service has no arguments.

Response

The field error gives the calibration error in pixels which is computed from the translational
error translation_error_meter and the rotational error rotation_error_degree. This value
is only given for compatibility with older versions. The translational and rotational errors
should be preferred.

Table 6.32: Return codes of the get_calibration service call
status success Description

0 true returned valid calibration pose
2 false calibration result is not available

The definition for the response with corresponding datatypes is:

Roboception GmbH
Manual: rc_visard_ng

216 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

{
"name": "get_calibration",
"response": {
"error": "float64",
"message": "string",
"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"robot_mounted": "bool",
"rotation_error_degree": "float64",
"status": "int32",
"success": "bool",
"tags": [

{
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"size": "float64"

}
],
"translation_error_meter": "float64"

}
}

remove_calibration

removes the persistent hand-eye calibration on the rc_visard NG. After this call the
get_calibration service reports again that no hand-eye calibration is available. This ser-
vice call will also delete all the stored calibration poses and corresponding camera images
in the slots.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/remove_

→˓calibration

API version 1 (deprecated)

Roboception GmbH
Manual: rc_visard_ng

217 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/remove_calibration

Request

This service has no arguments.

Response

Table 6.33: Return codes of the get_calibration service call
status success Description

0 true removed persistent calibration, device reports as uncalibrated
1 true no persistent calibration found, device reports as uncalibrated
2 false could not remove persistent calibration

The definition for the response with corresponding datatypes is:

{
"name": "remove_calibration",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

set_pose

allows to provide a robot pose as calibration pose to the hand-eye calibration routine and
records the current image of the calibration grid.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/set_pose

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/set_pose

Request

The slot argument is used to assign unique numbers to the different calibration poses. The
range for slot is from 0 to 15. At each instant when set_pose is called, an image is recorded.
This service call fails if the grid was undetectable in the current image.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

218 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

(continued from previous page)

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"slot": "uint32"

}
}

Response

Table 6.34: Return codes of the set_pose service call
status success Description

1 true pose stored successfully
3 true pose stored successfully; collected enough poses for calibration,

i.e., ready to calibrate
4 false calibration grid was not detected, e.g., not fully visible in camera

image
8 false no image data available

12 false given orientation values are invalid
13 false invalid slot number

The field overexposed indicates if parts of the calibration grid were overexposed in this im-
age.

The definition for the response with corresponding datatypes is:

{
"name": "set_pose",
"response": {
"message": "string",
"overexposed": "bool",
"status": "int32",
"success": "bool"

}
}

get_poses

returns the robot poses that are currently stored for the hand-eye calibration routine.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/get_poses

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/get_poses

Request

This service has no arguments.

Response

Roboception GmbH
Manual: rc_visard_ng

219 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

Table 6.35: Return codes of the get_poses service call
status success Description

0 true stored poses are returned
1 true no calibration pose available

The field overexposed indicates if parts of the calibration grid were overexposed in this im-
age.

The definition for the response with corresponding datatypes is:

{
"name": "get_poses",
"response": {
"message": "string",
"poses": [

{
"overexposed": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"slot": "uint32",
"tag_ids": [
"string"

]
}

],
"status": "int32",
"success": "bool"

}
}

delete_poses

deletes the calibration poses and corresponding images with the specified slots.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/delete_

→˓poses

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/delete_poses

Request

Roboception GmbH
Manual: rc_visard_ng

220 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

The slots argument specifies which calibration poses should be deleted. If no slots are
provided, nothing will be deleted.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"slots": [
"uint32"

]
}

}

Response

Table 6.36: Return codes of the delete_poses service call
status success Description

0 true poses successfully deleted
1 true no slots given

The definition for the response with corresponding datatypes is:

{
"name": "delete_poses",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

reset_calibration

deletes all previously provided poses and corresponding images. The last saved calibration
result is reloaded. This service might be used to (re-)start the hand-eye calibration from
scratch.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/reset_

→˓calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/reset_calibration

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_calibration",
"response": {

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

221 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

(continued from previous page)

"message": "string",
"status": "int32",
"success": "bool"

}
}

calibrate

calculates and returns the hand-eye calibration transformation with the robot poses config-
ured by the set_pose service.

Details

save_calibration must be called to make the calibration available for other modules via the
get_calibration service call and to store it persistently.

Note: For calculating the hand-eye calibration transformation at least four robot calibra-
tion poses are required (see set_pose service). However, eight calibration poses are
recommended.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/calibrate

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/calibrate

Request

This service has no arguments.

Response

The field error gives the calibration error in pixels which is computed from the translational
error translation_error_meter and the rotational error rotation_error_degree. This value
is only given for compatibility with older versions. The translational and rotational errors
should be preferred.

Table 6.37: Return codes of the calibrate service call
status success Description

0 true calibration successful, returned calibration result
1 false not enough poses to perform calibration
2 false calibration result is invalid, please verify the input data
3 false given calibration grid dimensions are not valid
4 false insufficient rotation, tcp_offset and tcp_rotation_axis must be

specified
5 false sufficient rotation available, tcp_rotation_axis must be set to -1
6 false poses are not distinct enough from each other

The definition for the response with corresponding datatypes is:

{
"name": "calibrate",
"response": {

"error": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

222 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

(continued from previous page)

"message": "string",
"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"robot_mounted": "bool",
"rotation_error_degree": "float64",
"status": "int32",
"success": "bool",
"tags": [

{
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"size": "float64"

}
],
"translation_error_meter": "float64"

}
}

save_calibration

persistently saves the result of hand-eye calibration to the rc_visard NG and overwrites the
existing one. The stored result can be retrieved any time by the get_calibration service.
This service call will also delete all the stored calibration poses and corresponding camera
images in the slots.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/save_

→˓calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/save_calibration

Roboception GmbH
Manual: rc_visard_ng

223 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

Request

This service has no arguments.

Response

Table 6.38: Return codes of the save_calibration service call
status success Description

0 true calibration saved successfully
1 false could not save calibration file
2 false calibration result is not available

The definition for the response with corresponding datatypes is:

{
"name": "save_calibration",
"response": {

"message": "string",
"status": "int32",
"success": "bool"

}
}

set_calibration

sets the hand-eye calibration transformation with arguments of this call.

Details

The calibration transformation is expected in the same format as returned by the calibrate
and get_calibration calls. The given calibration information is also stored persistently on
the sensor by internally calling save_calibration.

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/set_

→˓calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/set_calibration

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

224 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

(continued from previous page)

}
},
"robot_mounted": "bool",
"tags": [

{
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"size": "float64"

}
]

}
}

Response

Table 6.39: Return codes of the set_calibration service call
status success Description

0 true setting the calibration transformation was successful
12 false given orientation values are invalid

The definition for the response with corresponding datatypes is:

{
"name": "set_calibration",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

reset_defaults

restores and applies the default values for this module’s parameters (“factory reset”). Does
not affect the calibration result itself or any of the slots saved during calibration. Only
parameters such as the grid dimensions and the mount type will be reset.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/reset_

→˓defaults

API version 1 (deprecated)

Roboception GmbH
Manual: rc_visard_ng

225 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.3.2 CollisionCheck

6.3.2.1 Introduction

The CollisionCheck module is an optional on-board module of the rc_visard NG and is licensed with any
of the modules ItemPick (Section 6.2.4) and BoxPick (Section 6.2.5) or CADMatch (Abschnitt 6.2.7) und
SilhouetteMatch (Abschnitt 6.2.6). Otherwise it requires a separate CollisionCheck license (Section 9.4)
to be purchased.

The module provides an easy way to check if a gripper is in collision with a load carrier, the point
cloud (only in combination with CADMatch (Abschnitt 6.2.7) und SilhouetteMatch (Abschnitt 6.2.6)),
or other detected objects (only in combination with CADMatch (Abschnitt 6.2.7) und SilhouetteM-
atch (Abschnitt 6.2.6)). It is integrated with the ItemPick (Section 6.2.4) and BoxPick (Section 6.2.5)
and CADMatch (Abschnitt 6.2.7) und SilhouetteMatch (Abschnitt 6.2.6) modules, but can be used as
standalone product. The models of the grippers for collision checking have to be defined in the Grip-
perDB (Section 6.4.3) module.

Warning: Collisions are checked only between the load carrier and the gripper, not the
robot itself, the flange, other objects or the item located in the robot gripper. Only if
check_collisions_with_point_cloud is enabled in the respective detection module, collisions be-
tween the gripper and a watertight version of the point cloud will be checked. Only in combination
with CADMatch (Abschnitt 6.2.7) und SilhouetteMatch (Abschnitt 6.2.6), and only in case the se-
lected template contains a collision geometry and check_collisions_with_matches is enabled in
the respective detection module, also collisions between the gripper and other detected objects will
be checked. Collisions with objects that cannot be detected will not be checked.

Table 6.40: Specifications of the CollisionCheck module
Collision checking with detected load carrier, detected objects (only CADMatch (Abschnitt

6.2.7) und SilhouetteMatch (Abschnitt 6.2.6)), baseplane (only
SilhouetteMatch, Section 6.2.6), point cloud (only
CADMatch (Abschnitt 6.2.7) und SilhouetteMatch (Abschnitt 6.2.6))

Collision checking available in ItemPick (Section 6.2.4) and BoxPick (Section 6.2.5),
CADMatch (Abschnitt 6.2.7) und SilhouetteMatch (Abschnitt 6.2.6)

6.3.2.2 Collision checking

Roboception GmbH
Manual: rc_visard_ng

226 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

Stand-alone collision checking

The check_collisions service call triggers collision checking between the chosen gripper and the
provided load carriers for each of the provided grasps. Checking collisions with other objects or the
point cloud is not possible with the stand-alone check_collisions service. The CollisionCheck module
checks if the chosen gripper is in collision with at least one of the load carriers, when the TCP of the
gripper is positioned in the grasp position. It is possible to check the collision with multiple load carriers
simultaneously. The grasps which are in collision with any of the defined load carriers will be returned
as colliding.

The pre_grasp_offset can be used for additional collision checking. The pre-grasp offset 𝑃𝑜𝑓𝑓 is the
offset between the grasp point 𝑃𝑔𝑟𝑎𝑠𝑝 and the pre-grasp position 𝑃𝑝𝑟𝑒 in the grasp’s coordinate frame
(see Fig. 6.24). If the pre-grasp offset is defined, the grasp will be detected as colliding if the gripper
is in collision at any point during motion from the pre-grasp position to the grasp position (assuming a
linear movement).

y

z

x

Ppre

Pgrasp
y

z
x

Poff=Pgrasp-Ppre

Fig. 6.24: Illustration of the pre-grasp offset parameter for collision checking. In this case, the pre-grasp
position as well as the grasp position are collision free. However, the trajectory between these poses
would have collisions. Thus, this grasp pose would be marked as colliding.

Collision checking within other modules

Collision checking is integrated in the following modules’ services:

• ItemPick (Section 6.2.4): compute_grasps (see compute_grasps, Section 6.2.4.7)

• BoxPick (Section 6.2.5): compute_grasps (see compute_grasps, Section 6.2.5.8)

• SilhouetteMatch (Section 6.2.6): detect_object (see detect_object , Section 6.2.6.11)

• CADMatch (Section 6.2.7): detect_object (see detect_object , Section 6.2.7.10)

Each of these services can take a collision_detection argument consisting of the gripper_id of the
default gripper and the pre_grasp_offset as described in the previous section Stand-alone collision
checking (Section 6.3.2.2). The default gripper given by the gripper_id argument is only used for grasp
points which do not have an individual gripper ID assigned. When the collision_detection argument
is given, these services only return the grasps at which the gripper is not in collision or which could not
be checked for collisions. When a load carrier ID is provided to these services, collision checking will
always be performed between the gripper and the load carrier. Additional collision check features can
be enabled depending on the module.

Only for CADMatch (Abschnitt 6.2.7) und SilhouetteMatch (Abschnitt 6.2.6), and only in case the se-
lected template contains a collision geometry and check_collisions_with_matches is enabled in the
respective detection module, grasp points at which the gripper would be in collision with other detected
objects are also rejected. The object on which the grasp point to be checked is located, is excluded
from the collision check.

Roboception GmbH
Manual: rc_visard_ng

227 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

When a gripper is defined for a grasp point in the object template for CADMatch (Abschnitt 6.2.7) und Sil-
houetteMatch (Abschnitt 6.2.6), then this gripper will be used for collision checking at that specific grasp
point instead of the default gripper defined in the collision_detection argument of the detect_object
service (see Setting of grasp points, Section 6.2.6.4). The grasps returned by the detect_object ser-
vice contain a flag collision_checked, indicating whether the grasp was checked for collisions, and
the field gripper_id. If collision_checked is true, the returned gripper_id contains the ID of the
gripper that was used for the collision check. That is the ID of the gripper defined for that specific
grasp, or, if empty, the gripper that was given in the collision_detection argument of the request. If
collision_checked is false, the returned gripper_id is the gripper ID that was defined for that grasp.

In SilhouetteMatch, Section 6.2.6, collisions between the gripper and the base plane can be checked, if
check_collisions_with_base_plane is enabled in SilhouetteMatch.

Collisions between the gripper and a watertight version of the point cloud can be checked if
check_collisions_with_point_cloud is enabled in the respective module.

Warning: Collisions are checked only between the load carrier and the gripper, not the robot it-
self, the flange or other objects. Only if check_collisions_with_point_cloud is enabled, collisions
between the gripper and a watertight version of the point cloud are checked. Only in combination
with CADMatch (Abschnitt 6.2.7) und SilhouetteMatch (Abschnitt 6.2.6), and only in case the se-
lected template contains a collision geometry and check_collisions_with_matches is enabled in
the respective detection module, also collisions between the gripper and other detected objects are
checked. Collisions with objects that cannot be detected will not be checked.

Only in combination with CADMatch, Section 6.2.7 and only if
check_collisions_during_retraction is enabled in CADMatch and a load carrier and a pre-
grasp offset are given, collisions between the object in the gripper and the walls of the given load
carrier are checked along the linear trajectory from the grasp point to the pre-grasp pose.

The collision-check results are affected by run-time parameters, which are listed and explained further
below.

6.3.2.3 Parameters

The CollisionCheck module is called rc_collision_check in the REST-API and is represented in the
Web GUI (Section 7.1) under Configuration → CollisionCheck. The user can explore and configure the
rc_collision_check module’s run-time parameters, e.g. for development and testing, using the Web
GUI or the REST-API interface (Section 7.2).

Parameter overview

This module offers the following run-time parameters:

Roboception GmbH
Manual: rc_visard_ng

228 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

Table 6.41: The rc_collision_check module’s run-time parame-
ters

Name Type Min Max Default Description
check_bottom bool false true true Whether to enable collision check-

ing with the bottom of the load car-
rier

check_flange bool false true true Whether all grasps with the flange
inside the load carrier should be
marked as colliding

collision_dist float64 0.0 0.1 0.01 Minimum distance in meters be-
tween any element of the gripper
and the load carrier or the base
plane (only SilhouetteMatch) for a
collision-free grasp

pointcloud_watertight bool false true true Whether to use a watertight dispar-
ity image for collision check with the
point cloud

Description of run-time parameters

Each run-time parameter is represented by a row in the Web GUI’s Settings section under Configuration
→ CollisionCheck. The name in the Web GUI is given in brackets behind the parameter name:

collision_dist (Collision Distance)

Minimal distance in meters between any part of the gripper and the load carrier and/or the
base plane (only SilhouetteMatch) for a grasp to be considered collision free.

Note: The collision distance is not applied when checking collisions between the gripper
and the point cloud, or the gripper and other detected objects. It is not applied when
checking if the flange is inside the load carrier (check_flange), either.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_collision_check/parameters?collision_

→˓dist=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_collision_check/parameters?collision_dist=<value>

check_flange (Check Flange)

Performs an additional safety check as described in Robot flange radius (Section 6.4.3.2).
If this parameter is set, all grasps in which any part of the robot’s flange is inside the load
carrier are marked as colliding.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_collision_check/parameters?check_flange=
→˓<value>

Roboception GmbH
Manual: rc_visard_ng

229 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_collision_check/parameters?check_flange=<value>

check_bottom (Check Bottom)

When this check is enabled the collisions will be checked not only with the side walls of the
load carrier but also with its bottom. It might be necessary to disable this check if the TCP is
inside the collision geometry (e.g. is defined inside a suction cup).

The load carrier bottom will always be excluded for the collision check between the object in
the gripper and the load carrier during retraction in combination with ItemPick (Section 6.2.4)
and BoxPick (Section 6.2.5) when check_collisions_during_retraction is enabled.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_collision_check/parameters?check_bottom=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_collision_check/parameters?check_bottom=<value>

pointcloud_watertight (Watertight Point Cloud)

When this option is enabled the point cloud will be made watertight for collision checking.
In a watertight point cloud, holes from the disparity image will be interpolated by valid mea-
surements of neighboring pixels, so that the resulting point cloud has no holes. This leads
to conservative collision checking results.

Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_collision_check/parameters?pointcloud_

→˓watertight=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_collision_check/parameters?pointcloud_watertight=
→˓<value>

6.3.2.4 Status values

The rc_collision_check module reports the following status values:

Table 6.42: The rc_collision_check module status values
Name Description
last_evaluated_grasps Number of evaluated grasps
last_collision_free_grasps Number of collision-free grasps
collision_check_time Collision checking runtime

Roboception GmbH
Manual: rc_visard_ng

230 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

6.3.2.5 Services

The user can explore and call the rc_collision_check module’s services, e.g. for development and
testing, using REST-API interface (Section 7.2) or the rc_visard NG Web GUI (Section 7.1).

The CollisionCheck module offers the following services.

reset_defaults

Resets all parameters of the module to its default values, as listed in above table.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_collision_check/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_collision_check/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

check_collisions (deprecated)

Triggers a collision check between a gripper and a load carrier.

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_collision_check/services/check_collisions

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_collision_check/services/check_collisions

Request

Required arguments:

Roboception GmbH
Manual: rc_visard_ng

231 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

grasps: list of grasps that should be checked.

load_carriers: list of load carriers against which the collision should be checked.
The fields of the load carrier definition are described in Detection of load carri-
ers (Section 6.2.2.2). The position frame of the grasps and load carriers has to be
the same.

gripper_id: the id of the gripper that is used to check the collisions. The gripper
has to be configured beforehand.

Optional arguments:

pre_grasp_offset: the offset in meters from the grasp position to the pre-grasp
position in the grasp frame. If this argument is set, the collisions will not only be
checked in the grasp point, but also on the path from the pre-grasp position to the
grasp position (assuming a linear movement).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"grasps": [
{

"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"uuid": "string"

}
],
"gripper_id": "string",
"load_carriers": [

{
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

232 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

(continued from previous page)

"z": "float64"
}

},
"pose_frame": "string",
"rim_thickness": {
"x": "float64",
"y": "float64"

}
}

],
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}

Response

colliding_grasps: list of grasps in collision with one or more load carriers.

collision_free_grasps: list of collision-free grasps.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

{
"name": "check_collisions",
"response": {

"colliding_grasps": [
{

"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"uuid": "string"

}
],
"collision_free_grasps": [

{
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

233 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

(continued from previous page)

"z": "float64"
}

},
"pose_frame": "string",
"uuid": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_gripper (deprecated)

Persistently stores a gripper on the rc_visard NG.

API version 2

This service is not available in API version 2. Use set_gripper (Section 6.4.3.3) in
rc_gripper_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_collision_check/services/set_gripper

The definitions of the request and response are the same as described in
set_gripper (Section 6.4.3.3) in rc_gripper_db.

get_grippers (deprecated)

Returns the configured grippers with the requested gripper_ids.

API version 2

This service is not available in API version 2. Use get_grippers (Section 6.4.3.3) in
rc_gripper_db instead.

API version 1 (deprecated)

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_collision_check/services/get_grippers

The definitions of the request and response are the same as described in
get_grippers (Section 6.4.3.3) in rc_gripper_db.

delete_grippers (deprecated)

Deletes the configured grippers with the requested gripper_ids.

API version 2

This service is not available in API version 2. Use delete_grippers (Section 6.4.3.3) in
rc_gripper_db instead.

API version 1 (deprecated)

Roboception GmbH
Manual: rc_visard_ng

234 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

This service can be called as follows.

PUT http://<host>/api/v1/nodes/rc_collision_check/services/delete_grippers

The definitions of the request and response are the same as described in
delete_grippers (Section 6.4.3.3) in rc_gripper_db.

6.3.2.6 Return codes

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate
that the service failed. Positive return_code values indicate that the service succeeded with additional
information. The smaller value is selected in case a service has multiple return_code values, but all
messages are appended in the return_code message.

The following table contains a list of common codes:

Table 6.43: Return codes of the CollisionCheck services
Code Description

0 Success
-1 An invalid argument was provided
-7 Data could not be read or written to persistent storage
-9 No valid license for the module

-10 New gripper could not be added as the maximum storage capacity of grippers has been
exceeded

10 The maximum storage capacity of grippers has been reached
11 Existing gripper was overwritten

6.3.3 Camera calibration

The camera calibration module is a base module which is available on every rc_visard NG.

To use the camera as measuring instrument, camera parameters such as focal length, lens distortion,
and the relationship of the cameras to each other must be exactly known. The parameters are de-
termined by calibration and used for image rectification (see Rectification, Section 6.1.1), which is the
basis for all other image processing modules.

The rc_visard NG is calibrated at production time. Nevertheless, checking calibration and recalibration
might be necessary if the rc_visard NG was exposed to strong mechanical impact.

The camera calibration module is responsible for checking calibration and calibrating.

6.3.3.1 Self-calibration

The camera calibration module automatically runs in self-calibration mode at a low frequency in the
background. In this mode, the rc_visard NG observes the alignment of image rows of both rectified
images. A mechanical impact, such as one caused by dropping the rc_visard NG, might result in a
misalignment. If a significant misalignment is detected, then it is automatically corrected. After each
reboot and after each correction, the current self-calibration offset is reported in the camera module’s
log file (see Downloading log files, Section 9.5) as:

“rc_stereocalib: Current self-calibration offset is 0.00, update counter is 0”

The update counter is incremented after each automatic correction. It is reset to 0 after manual recali-
bration of the rc_visard NG.

Under normal conditions, such as the absence of mechanical impact on the rc_visard NG, self-
calibration should never occur. Self-calibration allows the rc_visard NG to work normally even after
misalignment is detected, since it is automatically corrected. Nevertheless, recalibrating the camera

Roboception GmbH
Manual: rc_visard_ng

235 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

manually is recommended if the update counter is not 0. The Web GUI displays a warning when self
calibration has occurred.

6.3.3.2 Calibration process

Manual calibration can be done through the Web GUI (Section 7.1) under Configuration → Camera
Calibration. This page provides a wizard to guide the user through the calibration process.

Note: Camera calibration is normally unnecessary for the rc_visard NG since it is calibrated at
production time. Therefore, calibration is only required after strong mechanical impacts, such as
occur when dropping the rc_visard NG.

During calibration, the calibration grid must be detected in different poses. When holding the calibration
grid, make sure that all black squares of the grid are completely visible and not occluded in both camera
images. A green check mark overlays each correctly detected square. The correct detection of the
grid is only possible if all of the black squares are detected. Some of the squares not being detected,
or being detected only briefly might indicate bad lighting conditions, or a damaged grid. Squares in
overexposed parts of the calibration grid are highlighted in red. In this case, the lighting conditions or
exposure setting must be adjusted. A thick green border around the calibration grid indicates that it was
detected correctly in both camera images.

Calibration settings

The quality of camera calibration heavily depends on the quality of the calibration grid. Calibration grids
can be obtained from Roboception.

Fig. 6.25: Calibration settings

In the first step, the calibration grid must be specified. The Next button proceeds to the next step.

Roboception GmbH
Manual: rc_visard_ng

236 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

Verify calibration

In the next step, the current calibration can be verified. To perform the verification, the grid must be held
such that it is simultaneously visible in both cameras. When the grid is detected, the calibration error is
automatically computed and the result is displayed on the screen.

Fig. 6.26: Verification of calibration

Note: To compute a meaningful calibration error, the grid should be held as close as possible to
the cameras. If the grid only covers a small section of the camera images, the calibration error will
always be less than when the grid covers the full image. For this reason, the minimal and maximal
calibration error during verification are shown in addition to the calibration error at the current grid
position.

The typical calibration error is below 0.2 pixels. If the error is in this range, then the calibration procedure
can be skipped. If the calibration error is greater, the calibration procedure should be performed to
guarantee full sensor performance. The button Next starts the procedure.

Warning: A large error during verification can be due to miscalibrated cameras, an inaccurate
calibration grid, or wrong grid width or height. In case you use a custom calibration grid, please

Roboception GmbH
Manual: rc_visard_ng

237 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

make sure that the grid is accurate and the entered grid width and height are correct. Otherwise,
manual calibration will actually decalibrate the cameras!

Calibrate

The camera’s exposure time should be set appropriately before starting the calibration. To achieve
good calibration results, the images should be well-exposed and motion blur should be avoided. Thus,
the maximum auto-exposure time should be as short as possible, but still allow a good exposure. The
current exposure time is displayed below the camera images as shown in Fig. 6.28.

Full calibration consists of calibrating each camera individually (monocalibration) and then performing
a stereo calibration to determine the relationship between them. In most cases, the intrinsic calibration
of each camera does not get corrupted. For this reason, monocalibration is skipped by default during a
recalibration, but can be performed by clicking Perform Monocalibration in the Calibrate tab. This should
only be done if the result of the stereo calibration is not satisfactory.

Stereo calibration

During stereo calibration, both cameras are calibrated to each other to find their relative rotation and
translation.

The camera images can also be displayed mirrored to simplify the correct positioning of the calibration
grid.

First, the grid should be held as close as possible to the camera and very still. It must be fully visible in
both images and the cameras should look perpendicularly onto the grid. If the grid is not perpendicular
to the line of sight of the cameras, this will be indicated by small green arrows pointing to the expected
positions of the grid corners (see Fig. 6.27).

Fig. 6.27: Arrows indicating that the grid is not perpendicular to the camera’s line of sight during stereo
calibration

The grid must be kept very still for detection. If motion blur occurs, the grid will not be detected. All
grid cells that are drawn onto the image have to be covered by the calibration grid. This is visualized by
filling the covered cells in green (see Fig. 6.28).

For the rc_visard NG all cells can be covered at once by holding the grid close enough.

Roboception GmbH
Manual: rc_visard_ng

238 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

Fig. 6.28: Stereo calibration: Hold the grid as close as possible to fill all visualized cells

Note: If the check marks on the calibration grid all vanish, then either the camera does not look
perpendicularly onto the grid, or the grid is too far away from the camera.

Once all grid cells are covered, they disappear and a single far cell is visualized. Now, the grid should
be held as far as possible from the cameras, so that the small cell is covered. Arrows will indicate if the
grid is still too close to the camera. When the grid is successfully detected at the far pose, the cell is
filled in green and the result can be computed (see Fig. 6.29).

Roboception GmbH
Manual: rc_visard_ng

239 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

Fig. 6.29: Holding the grid far away during stereo calibration

If stereo calibration yields an unsatisfactory calibration error, then calibration should be repeated with
monocalibration (see next Section Monocalibration).

Monocalibration

Monocalibration is the intrinsic calibration of each camera individually. Since the intrinsic calibration
normally does not get corrupted, the monocalibration should only be performed if the result of stereo
calibration is not satisfactory.

Click Perform Monocalibration in the Calibrate tab to start monocalibration.

For monocalibration, the grid has to be held in certain poses. The arrows from the grid corners to the
green areas indicate that all grid corners should be placed inside the green areas. The green areas
are called sensitive areas. The Size of Sensitive Area slider can control their size to ease calibration.
However, please be aware that increasing their size too much may result in slightly lower calibration
accuracy.

Holding the grid upside down is a common mistake made during calibration. Spotting this in this case is
easy because the green lines from the grid corners into the green areas will cross each other as shown
in Fig. 6.30.

Fig. 6.30: Wrongly holding the grid upside down leads to crossed green lines.

Note: Calibration might appear cumbersome as it involves holding the grid in certain predefined
poses. However, these poses are required to ensure an unbiased, high-quality calibration result.

Roboception GmbH
Manual: rc_visard_ng

240 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

The monocalibration process involves five poses for each camera as shown in Fig. 6.31.

Fig. 6.31: Poses required for monocamera calibration

After the corners or sides of the grid are placed on top of the sensitive areas, the process automatically
shows the next pose required. When the process is finished for the left camera, the same procedure is
repeated for the right one.

Continue with the guidelines given in the previous Section Stereo calibration.

Storing the calibration result

Clicking the Compute Calibration button finishes the process and displays the final result. The indicated
result is the mean reprojection error of all calibration points. It is given in pixels and typically has a value
below 0.2.

Pressing Save Calibration applies the calibration and saves it to the device.

Note: The given result is the minimum error left after calibration. The real error is definitely not
less than this, but could in theory be larger. This is true for every camera-calibration algorithm and
the reason why we enforce holding the grid in very specific poses. Doing so ensures that the real
calibration error cannot significantly exceed the reported error.

Warning: If a hand-eye calibration was stored on the rc_visard NG before camera calibration,
the hand-eye calibration values could have become invalid. Please repeat the hand-eye calibration
procedure.

6.3.3.3 Parameters

The module is called rc_stereocalib in the REST-API.

Note: The camera calibration module’s available parameters and status values are for internal use
only and may change in the future without further notice. Calibration should only be performed
through the Web GUI as described above.

6.3.3.4 Services

Note: The camera calibration module’s available service calls are for internal use only and may
change in the future without further notice. Calibration should only be performed through the Web
GUI as described above.

Roboception GmbH
Manual: rc_visard_ng

241 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

6.3.4 IO and Projector Control

The IOControl module is a base module which is available on every rc_visard NG.

The IOControl module allows reading the status of the general purpose digital inputs and controlling the
digital general purpose outputs (GPIOs) of the camera. The outputs can be set to LOW or HIGH, or
configured to be HIGH for the exposure time of every image or every second image.

The purpose of the IOControl module is the control of an external light source or a projector, which is
connected to one of the camera’s GPIOs to be synchronized by the image acquisition trigger. In case
a pattern projector is used to improve stereo matching, the intensity images also show the projected
pattern, which might be a disadvantage for image processing tasks that are based on the intensity image
(e.g. edge detection). For this reason, the IOControl module allows setting GPIO outputs to HIGH for
the exposure time of every second image, so that intensity images without the projected pattern are
also available.

Note: For more details on the rc_visard NG’s GPIOs please refer to Wiring, Section 3.5.

6.3.4.1 Parameters

The IOControl module is called rc_iocontrol in the REST-API and is represented in the Web
GUI (Section 7.1) under Configuration → IOControl.

The user can change the parameters via the Web GUI, the REST-API interface (Section 7.2), or via
GigE Vision using the DigitalIOControl parameters LineSelector and LineSource (Category: DigitalIO-
Control , Section 7.6.3.4).

Parameter overview

This module offers the following run-time parameters:

Table 6.44: The rc_iocontrol module’s run-time parameters
Name Type Min Max Default Description
out1_mode string - - Low Out1 mode: [Low, High, Exposure-

Active, ExposureAlternateActive]
out2_mode string - - Low Out2 mode: [Low, High, Exposure-

Active, ExposureAlternateActive]

Description of run-time parameters

out1_mode and out2_mode (Out1 / Projector and Out2)

The output modes for GPIO Out 1 and Out 2 can be set individually:

Low sets the output permanently to LOW. This is the factory default.

High sets the output permanently to HIGH.

ExposureActive sets the output to HIGH for the exposure time of every image.

ExposureAlternateActive sets the output to HIGH for the exposure time of every
second image.

Via the REST-API, this parameter can be set as follows.

API version 2

Roboception GmbH
Manual: rc_visard_ng

242 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

PUT http://<host>/api/v2/pipelines/0/nodes/rc_iocontrol/parameters/parameters?<out1_

→˓mode|out2_mode>=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_iocontrol/parameters?<out1_mode|out2_mode>=<value>

Fig. 6.32 shows which images are used for stereo matching and transmission via GigE Vision in
ExposureActive mode with a user-defined frame rate of 8 Hz.

Internal acquisition

Camera image

GPIO Out 1
Disparity image

Fig. 6.32: Example of using the ExposureActive mode for GPIO Out 1 with a user-defined frame rate
of 8 Hz. The internal image acquisition is always 25 Hz. GPIO Out 1 is HIGH for the exposure time
of every image. A disparity image is computed for camera images that are sent out via GigE Vision
according to the user-defined frame rate.

The mode ExposureAlternateActive is meant to be used when an external random dot projector is
connected to the camera’s GPIO Out 1. When setting Out 1 to ExposureAlternateActive, the stereo
matching (Section ??) module only uses images with GPIO Out 1 being HIGH, i.e. projector is on.
The maximum frame rate that is used for stereo matching is therefore half of the frame rate configured
by the user. All modules which make use of the intensity image, like TagDetect (Section 6.2.3) and
ItemPick (Section 6.2.4), use the intensity images with GPIO Out 1 being LOW, i.e. projector is off. Fig.
6.33 shows an example.

Internal acquisition

Camera image

GPIO Out 1
Disparity image

Fig. 6.33: Example of using the ExposureAlternateActive mode for GPIO Out 1 with a user-defined
frame rate of 8 Hz. The internal image acquisition is always 25 Hz. GPIO Out 1 is HIGH for the exposure
time of every second image. A disparity image is computed for images where Out 1 is HIGH and that are
sent out via GigE Vision according to the user-defined frame rate. In ExposureAlternateActive mode,
intensity images are always transmitted pairwise: one with GPIO Out 1 HIGH, for which a disparity
image might be available, and one with GPIO Out 1 LOW.

Note: In ExposureAlternateActive mode, an intensity image with GPIO Out 1 being HIGH (i.e. with
projection) is always 40 ms away from an intensity image with Out 1 being LOW (i.e. without pro-
jection), regardless of the user-defined frame rate. This needs to be considered when synchronizing
disparity images and camera images without projection in this special mode.

The functionality can also be controlled by the DigitalIOControl parameters of the GenICam interface
(Category: DigitalIOControl , Section 7.6.3.4).

6.3.4.2 Services

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate

Roboception GmbH
Manual: rc_visard_ng

243 Rev: 26.01.3
Status: Jan 30, 2026

6.3. Configuration modules

that the service failed. Positive return_code values indicate that the service succeeded with additional
information.

The IOControl module offers the following services.

get_io_values

Retrieves the current state of the camera’s general purpose inputs and outputs (GPIOs).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_iocontrol/services/get_io_values

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_iocontrol/services/get_io_values

Request

This service has no arguments.

Response

The returned timestamp is the time of measurement.

input_mask and output_mask are bit masks defining which bits are used for input and output
values, respectively.

values holds the values of the bits corresponding to input and output as given by the
input_mask and output_mask.

return_code holds possible warnings or error codes and messages. Possible return_code
values are shown below.

Code Description
0 Success
-2 Internal error
-9 License for IOControl is not available

The definition for the response with corresponding datatypes is:

{
"name": "get_io_values",
"response": {
"input_mask": "uint32",
"inverter_mask": "uint32",
"output_mask": "uint32",
"ratio_mask": "uint32",
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"values": "uint32"

}
}

Roboception GmbH
Manual: rc_visard_ng

244 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).

Details

This service can be called as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_iocontrol/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_iocontrol/services/reset_defaults

Request

This service has no arguments.

Response

The definition for the response with corresponding datatypes is:

{
"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.4 Database modules

The rc_visard NG provides several database modules which enable the user to configure global data
which is used in many detection modules, such as load carriers and regions of interest. Via the REST-
API interface (Section 7.2) the database modules are only available in API version 2.

The database modules are:

• LoadCarrierDB (rc_load_carrier_db, Section 6.4.1) allows setting, retrieving and deleting load
carriers.

• RoiDB (rc_roi_db , Section 6.4.2) allows setting, retrieving and deleting 2D and 3D regions of
interest.

• GripperDB (rc_gripper_db, Section 6.4.3) allows setting, retrieving and deleting grippers for
collision checking.

6.4.1 LoadCarrierDB

6.4.1.1 Introduction

The LoadCarrierDB module (Load carrier database module) allows the global definition of load carriers,
which can then be used in many detection modules. The specified load carriers are available for all
modules supporting load carriers on the rc_visard NG.

The LoadCarrierDB module is a base module which is available on every rc_visard NG.

Roboception GmbH
Manual: rc_visard_ng

245 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

Table 6.45: Specifications of the LoadCarrierDB module
Supported load carrier types 4-sided or 3-sided
Supported rim types solid rim, stepped rim or ledged rim
Min. load carrier dimensions 0.1 m x 0.1 m x 0.05 m
Max. load carrier dimensions 5 m x 5 m x 5 m
Max. number of load carriers 50
Load carriers available in ItemPick (Section 6.2.4) and BoxPick (Section 6.2.5) and

CADMatch (Abschnitt 6.2.7) und SilhouetteMatch (Abschnitt 6.2.6)
Supported pose types no pose, orientation prior, exact pose
Supported reference frames camera, external

6.4.1.2 Load carrier definition

A load carrier (bin) is a container with four walls, a floor and a rectangular rim, which can contain objects.
It can be used to limit the volume in which to search for objects or grasp points.

A load carrier is defined by its outer_dimensions and inner_dimensions. The maximum
outer_dimensions are 5.0 meters in every dimension.

The origin of the load carrier reference frame is in the center of the load carrier’s outer box and its z
axis is perpendicular to the load carrier’s floor pointing outwards (see Fig. 6.34).

x
yz

outer_dimensions.x
inner_dimensions.x

inn
er
_d
im
en
sio
ns
.y

ou
ter
_d
im
en
sio
ns
.y

inner_dim
ensions.z

outer_dim
ensions.z

Fig. 6.34: Load carrier with reference frame and inner and outer dimensions

Note: Typically, outer and inner dimensions of a load carrier are available in the specifications of the
load carrier manufacturer.

The inner volume of the load carrier is defined by its inner dimensions, but includes a region of 10 cm
height above the load carrier, so that also items protruding from the load carrier are considered for
detection or grasp computation. Furthermore, an additional crop_distance is subtracted from the inner
volume in every dimension, which acts as a safety margin and can be configured as run-time parameter
in the LoadCarrier module (see Parameters, Section 6.2.2.5). Fig. 6.35 visualizes the inner volume of a
load carrier. Only points which are inside this volume are considered for detections.

Roboception GmbH
Manual: rc_visard_ng

246 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

0.1 m

crop_distance

Fig. 6.35: Visualization of the inner volume of a load carrier. Only points which are inside this volume
are considered for detections.

Since the load carrier detection is based on the detection of the load carrier’s rim, the rim geometry
must be specified if it cannot be determined from the difference between outer and inner dimensions. A
load carrier with a stepped rim can be defined by setting a rim_thickness. The rim thickness gives the
thickness of the outer part of the rim in the x and y direction. When a rim thickness is given, an optional
rim_step_height can also be specified, which gives the height of the step between the outer and the
inner part of the rim. When the step height is given, it will also be considered during collision checking
(see CollisionCheck , Section 6.3.2). Examples of load carriers with stepped rims are shown in Fig. 6.36
A, B. In addition to the rim_thickness and rim_step_height the rim_ledge can be specified for defining
load carriers whose inner rim protrudes into the interior of the load carrier, such as pallet cages. The
rim_ledge gives the thickness of the inner part of the rim in the x and y direction. An example of a load
carrier with a ledged rim is shown in Fig. 6.36 C.

ou
te

r_
di

m
en

sio
n

z

rim_thickness (x, y)

inner_dimension (x, y)

outer_dimension (x, y)

in
ne

r_
di

m
en

sio
n

z

rim
_s

te
p_

he
ig

ht

ou
te

r_
di

m
en

sio
n

z

rim_thickness (x, y)

inner_dimension (x, y)

outer_dimension (x, y)

in
ne

r_
di

m
en

sio
n

z

rim
_s

te
p_

he
ig

ht

rim_thickness (x, y)

rim_ledge (x, y)

ou
te

r_
di

m
en

sio
n

z

in
ne

r_
di

m
en

sio
n

z

rim
_s

te
p_

he
ig

ht

inner_dimension (x, y)

outer_dimension (x, y)

A B C

Fig. 6.36: Examples of load carriers with stepped rim (A, B) or ledged rim (C)

The different rim types are applicable to both, standard 4-sided and 3-sided load carriers. For a 3-
sided load carrier, the type must be THREE_SIDED. If the type is set to STANDARD or left empty, a 4-sided
load carrier is specified. A 3-sided load carrier has one side that is lower than the other three sides.
This height_open_side is measured from the outer bottom of the load carrier. The open side is at the
negative y-axis of the load carrier’s coordinate system. Examples of the two load carrier types are given

Roboception GmbH
Manual: rc_visard_ng

247 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

in Fig. 6.37. The height of the lower side is only considered during collision checking and not required
for the detection of the load carrier.

x
yz

ou
ter

_d
im

en
sio

n y outer_dimension x

di
m

en
sio

n
z

ou
te

r_

inner_dimension x
in

ne
r_

di
m

en
sio

n
z

inn
er_

iim
en

sio
n y

x
yz

ou
ter

_d
im

en
sio

n y outer_dimension x

di
m

en
sio

n
z

ou
te

r_

inner_dimension x

in
ne

r_
di

m
en

sio
n

z

inn
er_

dim
en

sio
n y

he
ig

ht
_o

pe
n_

sid
e

A B

Fig. 6.37: Examples of a standard 4-sided load carrier (A) and a 3-sided load carrier (B)

A load carrier can be specified with a full 3D pose consisting of a position and an orientation quater-
nion, given in a pose_frame. Based on the given pose_type this pose is either used as an orientation
prior (pose_type is ORIENTATION_PRIOR or empty), or as the exact pose of the load carrier (pose_type is
EXACT_POSE).

In case the pose serves as orientation prior, the detected load carrier pose is guaranteed to have the
minimum rotation with respect to the load carrier’s prior pose. This pose type is useful for detecting tilted
load carriers and for resolving the orientation ambiguity in the x and y direction caused by the symmetry
of the load carrier model.

In case the pose type is set to EXACT_POSE, no load carrier detection will be performed on the scene
data, but the given pose will be used in exactly the same way as if the load carrier is detected at that
pose. This pose type is especially useful in cases where load carriers do not change their positions
and/or are hard to detect (e.g. because their rim is too thin or the material is too shiny).

The rc_visard NG can persistently store up to 50 different load carrier models, each one identified by a
different id. The configuration of a load carrier model is normally performed offline, during the set up
the desired application. This can be done via the REST-API interface (Section 7.2) or in the rc_visard
NG Web GUI.

Note: The configured load carrier models are persistent even over firmware updates and rollbacks.

6.4.1.3 Load carrier compartments

Some detection modules can make use of a load_carrier_compartment to further limit the volume for
the detection, for example ItemPick’s compute_grasps service (see 6.2.4.7). A load carrier compart-
ment is a box whose pose is defined as the transformation from the load carrier reference frame to the
compartment reference frame, which is located in the center of the compartment box (see Fig. 6.38).
The load carrier compartment is defined for each detection call separately and is not part of the load
carrier definition in the LoadCarrierDB module.

Roboception GmbH
Manual: rc_visard_ng

248 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

x
yz

co
mp

art
me

nt
.bo

x.y

compartment.box.x

com
partm

ent.box.z

Fig. 6.38: Sample compartment inside a load carrier. The coordinate frame shown in the image is the
reference frame of the compartment.

The compartment volume is intersected with the load carrier inner volume to compute the volume for
the detection. If this intersection should also contain the 10 cm region above the load carrier, the height
of the compartment box must be increased accordingly.

6.4.1.4 Interaction with other modules

Internally, the LoadCarrierDB module depends on, and interacts with other on-board modules as listed
below.

Hand-eye calibration

In case the camera has been calibrated to a robot, the load carrier’s exact pose or orientation prior
can be provided in the robot coordinate frame by setting the corresponding pose_frame argument to
external.

Two different pose_frame values can be chosen:

1. Camera frame (camera). The load carrier pose or orientation prior is provided in the camera
frame, and no prior knowledge about the pose of the camera in the environment is required. This
means that the configured load carriers move with the camera. It is the user’s responsibility to
update the configured poses if the camera frame moves (e.g. with a robot-mounted camera).

2. External frame (external). The load carrier pose or orientation prior is provided in the external
frame, configured by the user during the hand-eye calibration process. The module relies on the
on-board Hand-eye calibration module (Section 6.3.1) to retrieve the sensor mounting (static or
robot mounted) and the hand-eye transformation.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

All pose_frame values that are not camera or external are rejected.

Roboception GmbH
Manual: rc_visard_ng

249 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

6.4.1.5 Services

The LoadCarrierDB module is called rc_load_carrier_db in the REST-API and is represented in the
Web GUI (Section 7.1) under Database → Load Carriers. The user can explore and call the LoadCar-
rierDB module’s services, e.g. for development and testing, using the REST-API interface (Section 7.2)
or the Web GUI.

The LoadCarrierDB module offers the following services.

set_load_carrier

Persistently stores a load carrier on the rc_visard NG. All configured load carriers are per-
sistent over firmware updates and rollbacks.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_load_carrier_db/services/set_load_carrier

Request

Details for the definition of the load_carrier type are given in Load carrier definition (Section
6.4.1.2).

The field type is optional and accepts STANDARD and THREE_SIDED.

The field pose_type is optional and accepts NO_POSE, EXACT_POSE and ORIENTATION_PRIOR.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"load_carrier": {
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"pose_type": "string",
"rim_ledge": {

"x": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

250 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

(continued from previous page)

"y": "float64"
},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_load_carrier",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_load_carriers

Returns the configured load carriers with the requested load_carrier_ids. If no
load_carrier_ids are provided, all configured load carriers are returned.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_load_carrier_db/services/get_load_carriers

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"load_carrier_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_load_carriers",
"response": {
"load_carriers": [
{

"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

251 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

(continued from previous page)

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"pose_type": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_load_carriers

Deletes the configured load carriers with the requested load_carrier_ids. All load carriers
to be deleted must be explicitly stated in load_carrier_ids.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_load_carrier_db/services/delete_load_carriers

Request

The definition for the request arguments with corresponding datatypes is:

{
"args": {

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

252 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

(continued from previous page)

"load_carrier_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "delete_load_carriers",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.4.1.6 Return codes

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate
that the service failed. Positive return_code values indicate that the service succeeded with additional
information. The smaller value is selected in case a service has multiple return_code values, but all
messages are appended in the return_code message.

The following table contains a list of common codes:

Table 6.46: Return codes of the LoadCarrierDB module’s services
Code Description

0 Success
-1 An invalid argument was provided

-10 New element could not be added as the maximum storage capacity of load carriers has
been exceeded

10 The maximum storage capacity of load carriers has been reached
11 An existent persistent model was overwritten by the call to set_load_carrier

6.4.2 RoiDB

6.4.2.1 Introduction

The RoiDB module (region of interest database module) allows the global definition of 2D and 3D
regions of interest, which can then be used in many detection modules. The ROIs are available for all
modules supporting 2D or 3D ROIs on the rc_visard NG.

The RoiDB module is a base module which is available on every rc_visard NG.

3D ROIs can be used in CADMatch (Section 6.2.7), ItemPick (Section 6.2.4) and BoxPick (Section
6.2.5). 2D ROIs can be used in SilhouetteMatch (Section 6.2.6), and LoadCarrier (Section 6.2.2).

Roboception GmbH
Manual: rc_visard_ng

253 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

Table 6.47: Specifications of the RoiDB module
Supported ROI types 2D, 3D
Supported ROI geometries 2D ROI: rectangle, 3D ROI: box, sphere
Max. number of ROIs 2D: 100, 3D: 100
ROIs available in 2D: SilhouetteMatch (Section 6.2.6), LoadCarrier (Section 6.2.2),

3D: CADMatch (Section 6.2.7), ItemPick (Section 6.2.4) and
BoxPick (Section 6.2.5)

Supported reference frames camera, external

6.4.2.2 Region of interest

A region of interest (ROI) defines a volume in space (3D region of interest, region_of_interest), or a
rectangular region in the left camera image (2D region of interest, region_of_interest_2d) which is of
interest for a specific user-application.

A ROI can narrow the volume where a load carrier is searched for, or select a volume which only
contains items to be detected and/or grasped. Processing times can significantly decrease when using
a ROI.

3D regions of interest of the following types (type) are supported:

• BOX, with dimensions box.x, box.y, box.z.

• SPHERE, with radius sphere.radius.

The user can specify the 3D region of interest pose in the camera or the external coordinate system.
External can only be chosen if a Hand-eye calibration (Section 6.3.1) is available. When the sensor is
robot mounted, and the region of interest is defined in the external frame, the current robot pose must
be given to every detect service call that uses this region of interest.

A 2D ROI is defined as a rectangular part of the left camera image, and can be set via the REST-API
interface (Section 7.2) or the rc_visard NG Web GUI (Section 7.1) on the page Regions of Interest under
Database. The Web GUI offers an easy-to-use selection tool. Each ROI must have a unique name to
address a specific 2D ROI.

In the REST-API, a 2D ROI is defined by the following values:

• id: Unique name of the region of interest

• offset_x, offset_y: offset in pixels along the x-axis and y-axis from the top-left corner of the
image, respectively

• width, height: width and height in pixels

The rc_visard NG can persistently store up to 100 different 3D regions of interest and the same number
of 2D regions of interest. The configuration of regions of interest is normally performed offline, during
the set up of the desired application. This can be done via the REST-API interface (Section 7.2) of
RoiDB module, or in the rc_visard NG Web GUI (Section 7.1) on the page Regions of Interest under
Database.

Note: The configured regions of interest are persistent even over firmware updates and rollbacks.

6.4.2.3 Interaction with other modules

Internally, the RoiDB module depends on, and interacts with other on-board modules as listed below.

Roboception GmbH
Manual: rc_visard_ng

254 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

Hand-eye calibration

In case the camera has been calibrated to a robot, the pose of a 3D ROI can be provided in the robot
coordinate frame by setting the corresponding pose_frame argument.

Two different pose_frame values can be chosen:

1. Camera frame (camera). The ROI pose is provided in the camera frame, and no prior knowledge
about the pose of the camera in the environment is required. This means that the configured load
carriers move with the camera. It is the user’s responsibility to update the configured poses if the
camera frame moves (e.g. with a robot-mounted camera).

2. External frame (external). The ROI pose is provided in the external frame, configured by the user
during the hand-eye calibration process. The module relies on the on-board Hand-eye calibration
module (Section 6.3.1) to retrieve the sensor mounting (static or robot mounted) and the hand-eye
transformation.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

All pose_frame values that are not camera or external are rejected.

6.4.2.4 Services

The RoiDB module is called rc_roi_db in the REST-API and is represented in the Web GUI (Section
7.1) under Database → Regions of Interest. The user can explore and call the RoiDB module’s services,
e.g. for development and testing, using the REST-API interface (Section 7.2) or the Web GUI.

The RoiDB module offers the following services.

set_region_of_interest

Persistently stores a 3D region of interest on the rc_visard NG. All configured 3D regions of
interest are persistent over firmware updates and rollbacks.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/set_region_of_interest

Request

Details for the definition of the region_of_interest type are given in Region of inter-
est (Section 6.4.2.2).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"region_of_interest": {
"box": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

255 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

(continued from previous page)

"z": "float64"
},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"sphere": {

"radius": "float64"
},
"type": "string"

}
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_region_of_interest",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_region_of_interest_2d

Persistently stores a 2D region of interest on the rc_visard NG. All configured 2D regions of
interest are persistent over firmware updates and rollbacks.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/set_region_of_interest_2d

Request

Details for the definition of the region_of_interest_2d type are given in Region of inter-
est (Section 6.4.2.2).

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"region_of_interest_2d": {
"height": "uint32",
"id": "string",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

}
}

}

Roboception GmbH
Manual: rc_visard_ng

256 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

Response

The definition for the response with corresponding datatypes is:

{
"name": "set_region_of_interest_2d",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_regions_of_interest

Returns the configured 3D regions of interest with the requested region_of_interest_ids.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/get_regions_of_interest

Request

If no region_of_interest_ids are provided, all configured 3D regions of interest are re-
turned.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"region_of_interest_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_regions_of_interest",
"response": {

"regions_of_interest": [
{

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

257 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

(continued from previous page)

"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"sphere": {
"radius": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_regions_of_interest_2d

Returns the configured 2D regions of interest with the requested
region_of_interest_2d_ids.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/get_regions_of_interest_2d

Request

If no region_of_interest_2d_ids are provided, all configured 2D regions of interest are
returned.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"region_of_interest_2d_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_regions_of_interest_2d",
"response": {
"regions_of_interest": [
{

"height": "uint32",
"id": "string",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

}
],
"return_code": {

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

258 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

(continued from previous page)

"message": "string",
"value": "int16"

}
}

}

delete_regions_of_interest

Deletes the configured 3D regions of interest with the requested region_of_interest_ids.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/delete_regions_of_interest

Request

All regions of interest to be deleted must be explicitly stated in region_of_interest_ids.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"region_of_interest_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "delete_regions_of_interest",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_regions_of_interest_2d

Deletes the configured 2D regions of interest with the requested
region_of_interest_2d_ids.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_roi_db/services/delete_regions_of_interest_2d

Request

All 2D regions of interest to be deleted must be explicitly stated in
region_of_interest_2d_ids.

The definition for the request arguments with corresponding datatypes is:

Roboception GmbH
Manual: rc_visard_ng

259 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

{
"args": {

"region_of_interest_2d_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "delete_regions_of_interest_2d",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.4.2.5 Return codes

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate
that the service failed. Positive return_code values indicate that the service succeeded with additional
information. The smaller value is selected in case a service has multiple return_code values, but all
messages are appended in the return_code message.

The following table contains a list of common codes:

Table 6.48: Return codes of the RoiDB module’s services
Code Description

0 Success
-1 An invalid argument was provided

-10 New element could not be added as the maximum storage capacity of regions of interest
has been exceeded

10 The maximum storage capacity of regions of interest has been reached
11 An existent persistent model was overwritten by the call to set_region_of_interest or

set_region_of_interest_2d

6.4.3 GripperDB

6.4.3.1 Introduction

The GripperDB module (gripper database module) is an optional on-board module of the rc_visard
NG and is licensed with any of the modules ItemPick (Section 6.2.4) and BoxPick (Section 6.2.5) or
CADMatch (Abschnitt 6.2.7) und SilhouetteMatch (Abschnitt 6.2.6). Otherwise it requires a separate
CollisionCheck license (Section 9.4) to be purchased.

The module provides services to set, retrieve and delete grippers which can then be used for checking
collisions with a load carrier or other detected objects (only in combination with CADMatch (Abschnitt
6.2.7) und SilhouetteMatch (Abschnitt 6.2.6)). The specified grippers are available for all modules sup-
porting collision checking on the rc_visard NG.

Roboception GmbH
Manual: rc_visard_ng

260 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

Table 6.49: Specifications of the GripperDB module
Max. number of grippers 50
Supported gripper element geometries Box, Cylinder, CAD Element
Max. number of elements per gripper 15
Collision checking available in ItemPick (Section 6.2.4) and BoxPick (Section 6.2.5),

CADMatch (Abschnitt 6.2.7) und
SilhouetteMatch (Abschnitt 6.2.6)

6.4.3.2 Setting a gripper

The gripper is a collision geometry used to determine whether the grasp is in collision with the load
carrier. The gripper consists of up to 15 elements connected to each other.

At this point, the gripper can be built of elements of the following types:

• BOX, with dimensions box.x, box.y, box.z.

• CYLINDER, with radius cylinder.radius and height cylinder.height.

• CAD, with the id cad.id of the chosen CAD element.

Each gripper element can be assigned one of the following function_type values:

• NONE: default, same as empty. This element has no special function and will be considered during
collision checking as modelled.

• FINGER: This element is a movable finger or jaw and has a zero_pose in addition to its default pose.
It can move linearly from the zero pose towards the default pose by the stroke defined for each
grasp.

• SUCTION_CUP: This element is a deformable suction cup and will hence be ignored during collision
checking. It serves purely for visualization.

Additionally, for each gripper the flange radius, and information about the Tool Center Point (TCP) have
to be defined.

The configuration of the gripper is normally performed offline during the setup of the desired application.
This can be done via the REST-API interface (Section 7.2) or the rc_visard NG Web GUI (Section 7.1).

Robot flange radius

Collisions are checked only with the gripper, the robot body is not considered. As a safety feature,
to prevent collisions between the load carrier and the robot, all grasps having any part of the robot’s
flange inside the load carrier can be designated as colliding (see Fig. 6.39). This check is based on the
defined gripper geometry and the flange radius value. It is optional to use this functionality, and it can
be turned on and off with the CollisionCheck module’s run-time parameter check_flange as described
in Parameter overview (Section 6.3.2.3).

A B

Fig. 6.39: Case A would be marked as collision only if check_flange is true, because the robot’s flange
(red) is inside the load carrier. Case B is collision free independent of check_flange.

Roboception GmbH
Manual: rc_visard_ng

261 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

Uploading gripper CAD elements

A gripper can consist of boxes, cylinders and CAD elements. While boxes and cylinders can be param-
eterized when the gripper is created, the CAD elements must be uploaded beforehand to be available
during gripper creation. A CAD element can be uploaded via the REST-API interface (Section 7.2) as
described in Section CAD element API (Section 6.4.3.5) or via the rc_visard NG Web GUI (Section 7.1).
Supported file formats are STEP (*.stp, *.step), STL (*.stl), OBJ (*.obj) and PLY (*.ply). The maximum
file size to be uploaded is limited to 30 MB. The files are internally converted to PLY and, if necessary,
simplified. The CAD elements can be referenced during gripper creation by their ID.

Creating a gripper via the REST-API or the Web GUI

When creating a gripper via the REST-API interface (Section 7.2) or the Web GUI (Section 7.1), each
element of the gripper has a parent element, which defines how they are connected. The gripper is
always built in the direction from the robot flange to the TCP, and at least one element must have
‘flange’ as parent. The elements’ IDs must be unique and must not be ‘tcp’ or ‘flange’. The pose of the
child element has to be given in the coordinate frame of the parent element. The coordinate frame of a
CYLINDER or BOX element is always in its geometric center. Accordingly, for a child element to be exactly
below the parent element, the position of the child element must be computed from the heights of both
parent and child element (see Fig. 6.40).

Pcyl

Pbox

hbox

hcyl

Pdiff = (0, 0, (hcyl+hbox)/2)

Pdiff

Fig. 6.40: Reference frames for gripper creation via the REST-API and the Web GUI

In case a CAD element is used, the element’s origin is defined in the CAD data and is not necessarily
located in the center of the element’s bounding box.

It is recommended to create a gripper via the Web GUI, because it provides a 3D visualization of the
gripper geometry and also allows to automatically attach the child element to the bottom of its parent
element, when the corresponding option for this element is activated. In this case, the elements also stay
attached when any of their sizes change. Automatic attachment of CAD elements uses the element’s
bounding box as reference. Automatic attachment is only possible when the child element is not rotated
around the x or y axis with respect to its parent.

The reference frame for the first element for the gripper creation is always the center of the robot’s flange
with the z axis pointing outwards. It is possible to create a gripper with a tree structure, corresponding
to multiple elements having the same parent element, as long as they are all connected.

Roboception GmbH
Manual: rc_visard_ng

262 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

Calculated TCP position

After gripper creation via the set_gripper service call, the TCP position in the flange coordinate system
is calculated and returned as tcp_pose_flange. It is important to check if this value is the same as the
robot’s true TCP position. When creating a gripper in the Web GUI the current TCP position is always
displayed in the 3D gripper visualization.

Creating rotationally asymmetric grippers

For grippers which are not rotationally symmetric around the z axis, it is crucial to ensure that the gripper
is properly mounted, so that the representation stored in the GripperDB module corresponds to reality.

6.4.3.3 Services

The GripperDB module is called rc_gripper_db in the REST-API and is represented in the Web
GUI (Section 7.1) under Database → Grippers. The user can explore and call the GripperDB mod-
ule’s services, e.g. for development and testing, using the REST-API interface (Section 7.2) or the Web
GUI.

The GripperDB module offers the following services.

set_gripper

Persistently stores a gripper on the rc_visard NG. All configured grippers are persistent over
firmware updates and rollbacks.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_gripper_db/services/set_gripper

Request

Required arguments:

elements: list of geometric elements for the gripper. Each element must be of type
‘CYLINDER’ or ‘BOX’ with the corresponding dimensions in the cylinder or box
field, or of type ‘CAD’ with the corresponding id in the cad field. The pose of each
element must be given in the coordinate frame of the parent element (see Setting
a gripper (Section 6.4.3.2) for an explanation of the coordinate frames). The ele-
ment’s id must be unique and must not be ‘tcp’ or ‘flange’. The parent_id is the ID
of the parent element. It can either be ‘flange’ or it must correspond to another ele-
ment in list. Each element can have a function_type which is either NONE, FINGER
or SUCTION_CUP. Elements of type FINGER additionally need a zero_pose whose
orientation has to be the same as in the element’s pose. SUCTION_CUP elements
cannot have child elements.

flange_radius: radius of the flange used in case the check_flange run-time pa-
rameter is active.

id: unique name of the gripper

tcp_parent_id: ID of the element on which the TCP is defined

tcp_pose_parent: The pose of the TCP with respect to the coordinate frame of
the element specified in tcp_parent_id.

The definition for the request arguments with corresponding datatypes is:

Roboception GmbH
Manual: rc_visard_ng

263 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

{
"args": {

"elements": [
{

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cad": {
"id": "string"

},
"cylinder": {
"height": "float64",
"radius": "float64"

},
"id": "string",
"parent_id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"flange_radius": "float64",
"id": "string",
"tcp_parent_id": "string",
"tcp_pose_parent": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

gripper: returns the gripper as defined in the request with an additional field
tcp_pose_flange. This gives the coordinates of the TCP in the flange coordinate frame
for comparison with the true settings of the robot’s TCP.

return_code: holds possible warnings or error codes and messages.

The definition for the response with corresponding datatypes is:

Roboception GmbH
Manual: rc_visard_ng

264 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

{
"name": "set_gripper",
"response": {
"gripper": {
"elements": [

{
"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cad": {
"id": "string"

},
"cylinder": {
"height": "float64",
"radius": "float64"

},
"id": "string",
"parent_id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"flange_radius": "float64",
"id": "string",
"tcp_parent_id": "string",
"tcp_pose_flange": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"tcp_pose_parent": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

265 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

(continued from previous page)

"z": "float64"
}

},
"type": "string"

},
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_grippers

Returns the configured grippers with the requested gripper_ids.

Details

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_gripper_db/services/get_grippers

Request

If no gripper_ids are provided, all configured grippers are returned.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"gripper_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "get_grippers",
"response": {
"grippers": [
{

"elements": [
{
"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cad": {
"id": "string"

},
"cylinder": {
"height": "float64",
"radius": "float64"

},
"id": "string",
"parent_id": "string",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

266 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

(continued from previous page)

"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"flange_radius": "float64",
"id": "string",
"tcp_parent_id": "string",
"tcp_pose_flange": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"tcp_pose_parent": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"return_code": {

"message": "string",
"value": "int16"

}
}

}

delete_grippers

Deletes the configured grippers with the requested gripper_ids.

Details

Roboception GmbH
Manual: rc_visard_ng

267 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

This service can be called as follows.

PUT http://<host>/api/v2/nodes/rc_gripper_db/services/delete_grippers

Request

All grippers to be deleted must be explicitly stated in gripper_ids.

The definition for the request arguments with corresponding datatypes is:

{
"args": {

"gripper_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:

{
"name": "delete_grippers",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.4.3.4 Return codes

Each service response contains a return_code, which consists of a value plus an optional message.
A successful service returns with a return_code value of 0. Negative return_code values indicate
that the service failed. Positive return_code values indicate that the service succeeded with additional
information. The smaller value is selected in case a service has multiple return_code values, but all
messages are appended in the return_code message.

The following table contains a list of common codes:

Table 6.50: Return codes of the GripperDB services
Code Description

0 Success
-1 An invalid argument was provided
-7 Data could not be read or written to persistent storage
-9 No valid license for the module

-10 New gripper could not be added as the maximum storage capacity of grippers has been
exceeded

10 The maximum storage capacity of grippers has been reached
11 Existing gripper was overwritten

6.4.3.5 CAD element API

For gripper CAD element upload, download, listing and removal, special REST-API endpoints are pro-
vided. CAD elements can also be uploaded, downloaded and removed via the Web GUI. Up to 50 CAD
elements can be stored persistently on the rc_visard NG.

The maximum file size to be uploaded is limited to MB.

Roboception GmbH
Manual: rc_visard_ng

268 Rev: 26.01.3
Status: Jan 30, 2026

6.4. Database modules

GET /cad/gripper_elements
Get list of all CAD gripper elements.

Template request

GET /api/v2/cad/gripper_elements HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": "string"
}

]

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of GripperElement)

• 404 Not Found – element not found

Referenced Data Models

• GripperElement (Section 7.2.3)

GET /cad/gripper_elements/{id}
Get a CAD gripper element. If the requested content-type is application/octet-stream, the gripper
element is returned as file.

Template request

GET /api/v2/cad/gripper_elements/<id> HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the element (required)

Response Headers

• Content-Type – application/json application/ubjson application/octet-stream

Status Codes

• 200 OK – successful operation (returns GripperElement)

• 404 Not Found – element not found

Referenced Data Models

• GripperElement (Section 7.2.3)

Roboception GmbH
Manual: rc_visard_ng

269 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.4. Database modules

PUT /cad/gripper_elements/{id}
Create or update a CAD gripper element.

Template request

PUT /api/v2/cad/gripper_elements/<id> HTTP/1.1
Accept: multipart/form-data application/json

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the element (required)

Form Parameters

• file – CAD file (required)

Request Headers

• Accept – multipart/form-data application/json

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns GripperElement)

• 400 Bad Request – CAD is not valid or max number of elements reached

• 404 Not Found – element not found

• 413 Request Entity Too Large – File too large

Referenced Data Models

• GripperElement (Section 7.2.3)

DELETE /cad/gripper_elements/{id}
Remove a CAD gripper element.

Template request

DELETE /api/v2/cad/gripper_elements/<id> HTTP/1.1
Accept: application/json application/ubjson

Parameters

• id (string) – id of the element (required)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

Roboception GmbH
Manual: rc_visard_ng

270 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

6.4. Database modules

• 404 Not Found – element not found

Roboception GmbH
Manual: rc_visard_ng

271 Rev: 26.01.3
Status: Jan 30, 2026

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7 Interfaces

The following interfaces are provided for configuring and obtaining data from the rc_visard NG:

• Web GUI (Section 7.1)

Easy-to-use graphical interface to configure the rc_visard NG, do calibrations, view live
images, do service calls, visualize results, etc.

• REST-API interface (Section 7.2)

API to configure the rc_visard NG, query status information, do service calls, etc.

• Generic Robot Interface (Section 7.3)

TCP socket communication interface for configuring the rc_visard NG and for service
calls.

• OPC UA interface (Section 7.4)

OPC UA interface for configuring the rc_visard NG and for service calls.

• KUKA Ethernet KRL Interface (Section 7.5)

API to configure the rc_visard NG and do service calls from KUKA KSS robots.

• GigE Vision 2.0/GenICam (Section 7.6)

Images and camera related configuration.

• gRPC image stream interface (Section 7.7)

Stream synchronized image sets via gRPC.

• Time synchronization (Section 7.8)

Time synchronization between the rc_visard NG and the application host.

7.1 Web GUI

The rc_visard NG’s Web GUI can be used to test, calibrate, and configure the device.

7.1.1 Accessing the Web GUI

The Web GUI can be accessed from any web browser, such as Firefox, Google Chrome, or Microsoft
Edge, via the rc_visard NG’s IP address. The easiest way to access the Web GUI is to simply double
click on the desired device using the rcdiscover-gui tool as explained in Discovery of rc_visard NG
devices (Section 4.3).

Alternatively, some network environments automatically configure the unique host name of the rc_visard
NG in their Domain Name Server (DNS). In this case, the Web GUI can also be accessed directly using
the URL http://<host-name> by replacing <host-name> with the device’s host name.

Roboception GmbH
Manual: rc_visard_ng

272 Rev: 26.01.3
Status: Jan 30, 2026

7.1. Web GUI

For Linux and Mac operating systems, this even works without DNS via the multicast Domain Name
System (mDNS), which is automatically used if .local is appended to the host name. Thus, the URL
simply becomes http://<host-name>.local.

7.1.2 Exploring the Web GUI

The Web GUI’s dashboard page gives the most important information about the device and the software
modules.

Fig. 7.1: Dashboard page of the rc_visard NG’s Web GUI

The page’s side menu permits access to the individual pages of the rc_visard NG’s Web GUI:

Camera shows a live stream of the rectified camera images and allows changing camera parameters.
See Camera module (Section 6.1) for more information.

Depth Image shows a live stream of the left rectified, disparity, and confidence images. The
page contains various settings for depth-image computation and filtering. See sect-stereo-
matching (Section ??) for more information.

Modules gives access to the detection modules of the rc_visard NG (see Detection & Measure mod-
ules, Section 6.2).

Configuration gives access to the configuration modules of the rc_visard NG (see Configuration mod-
ules, Section 6.3).

Database gives access to the database modules of the rc_visard NG (see Database modules, Section
6.4).

Generic Robot Interface shows the jobs and hand-eye calibration configurations defined for the
Generic Robot Interface.

System gives access to general settings, device information and to the log files, and permits the
firmware or the license file to be updated.

Note: Further information on all parameters in the Web GUI can be obtained by pressing the Info
button next to each parameter.

Roboception GmbH
Manual: rc_visard_ng

273 Rev: 26.01.3
Status: Jan 30, 2026

7.1. Web GUI

7.1.3 Web GUI access control

The Web GUI has a simple mechanism to lock the UI against casual and accidental changes.

When enabling Web GUI access control via the System page, you will be asked to set a password.
Now the Web GUI is in a locked mode indicated by the lock symbol in the top bar. All pages, camera
streams, parameters and detections can be inspected as usual, but changes are not possible.

To temporarily unlock the Web GUI and make changes, click the lock symbol and enter the password.
While enabling or disabling Web GUI access control affects anyone accessing this rc_visard NG, the
unlocked state is only valid for the browser where it was unlocked and indicated by the open lock symbol.
It is automatically locked again after 10 minutes of inactivity.

Web GUI access control can also be disabled again on the System page after providing the current
password.

Warning: This is not a security feature! It only locks the Web GUI and not the REST-API. It is meant
to prevent accidental and casual changes e.g. via a connected screen.

Note: In case the password is lost, this can be disabled via the REST-API delete ui_lock (Section
7.2.2.3).

7.1.4 Downloading camera images

The Web GUI provides an easy way to download a snapshot of the current scene as a .tar.gz file by
clicking on the camera icon below the image live streams on the Camera page. This snapshot contains:

• the rectified camera images in full resolution as .png files,

• a camera parameter file containing the camera matrix, image dimensions, exposure time, gain
value and the stereo baseline,

• the current IMU readings as imu.csv file,

• a pipeline_status.json file containing information about all 3D-camera, detection and configuration
nodes running on the rc_visard NG,

• a backup.json file containing the settings of the rc_visard NG including grippers, load carriers and
regions of interest,

• a system_info.json file containing system information about the rc_visard NG.

The filenames contain the timestamps.

7.1.5 Downloading depth images and point clouds

The Web GUI provides an easy way to download the depth data of the current scene as a .tar.gz file
by clicking on the camera icon below the image live streams on the Depth Image page. This snapshot
contains:

• the rectified left and right camera images in full resolution as .png files,

• an image parameter file corresponding to the left image containing the camera matrix, image
dimensions, exposure time, gain value and the stereo baseline,

• the disparity, error and confidence images in the resolution corresponding to the currently chosen
quality as .png files,

• a disparity parameter file corresponding to the disparity image containing the camera matrix, im-
age dimensions, exposure time, gain value and the stereo baseline, and information about the
disparity values (i.e. invalid values, scale, offset),

Roboception GmbH
Manual: rc_visard_ng

274 Rev: 26.01.3
Status: Jan 30, 2026

7.2. REST-API interface

• the current IMU readings as imu.csv file,

• a pipeline_status.json file containing information about all 3D-camera, detection and configuration
nodes running on the rc_visard NG,

• a backup.json file containing the settings of the rc_visard NG including grippers, load carriers and
regions of interest,

• a system_info.json file containing system information about the rc_visard NG.

The filenames contain the timestamps.

When clicking on the mesh icon below the image live streams on the Depth Image page, a snapshot is
downloaded which additionally includes a mesh of the point cloud in the current depth quality (resolution)
as .ply file.

Note: Downloading a depth snapshot will trigger an acquisition in the same way as clicking on
the “Acquire” button on the Depth Image page of the Web GUI, and, thus, might affect running
applications.

7.2 REST-API interface

The rc_visard NG offers a comprehensive RESTful web interface (REST-API) which any HTTP client
or library can access. Whereas most of the provided parameters, services, and functionalities can also
be accessed via the user-friendly Web GUI (Section 7.1), the REST-API serves rather as a machine-to-
machine interface to the rc_visard NG, e.g., to programmatically

• set and get run-time parameters of computation nodes, e.g., of cameras or image processing
modules;

• do service calls, e.g., to start and stop individual computational nodes, or to use offered services
such as the hand-eye calibration;

• read the current state of the system and individual computational nodes; or

• update the rc_visard NG’s firmware or license.

Note: In the rc_visard NG’s REST-API, a node is a computational component that bundles certain al-
gorithmic functionality and offers a holistic interface (parameters, services, current status). Examples
for such nodes are the stereo matching node or the hand-eye calibration node.

7.2.1 General API structure

The general entry point to the rc_visard NG’s API is http://<host>/api/, where <host> is either the
device’s IP address or its host name as known by the respective DHCP server, as explained in network
configuration (Section 4.4). Accessing this entry point with a web browser lets the user explore and test
the full API during run-time using the Swagger UI (Section 7.2.4).

For actual HTTP requests, the current API version is appended to the entry point of the API, i.e.,
http://<host>/api/v2.

All data sent to and received by the REST-API follows the JavaScript Object Notation (JSON). The API is
designed to let the user create, retrieve, modify, and delete so-called resources as listed in Available
resources and requests (Section 7.2.2) using the HTTP requests below.

Roboception GmbH
Manual: rc_visard_ng

275 Rev: 26.01.3
Status: Jan 30, 2026

7.2. REST-API interface

Request type Description
GET Access one or more resources

and return the result as JSON.
PUT Modify a resource and return the

modified resource as JSON.
DELETE Delete a resource.
POST Upload file (e.g., license or

firmware image).

Depending on the type and the specific request itself, arguments to HTTP requests can be transmitted
as part of the path (URI) to the resource, as query string, as form data, or in the body of the request.
The following examples use the command line tool curl, which is available for various operating systems.
See https://curl.haxx.se.

• Get a node’s current status; its name is encoded in the path (URI)

curl -X GET 'http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching'

• Get values of some of a node’s parameters using a query string

curl -X GET 'http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters?
→˓name=minconf&name=maxdepth'

• Set a node’s parameter as JSON-encoded text in the body of the request

curl -X PUT --header 'Content-Type: application/json' -d '[{"name": "mindepth", "value": 0.
→˓1}]' 'http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters'

As for the responses to such requests, some common return codes for the rc_visard NG’s API are:

Status Code Description
200 OK The request was successful; the

resource is returned as JSON.
400 Bad Request A required attribute or argument

of the API request is missing or
invalid.

404 Not Found A resource could not be ac-
cessed; e.g., an ID for a re-
source could not be found.

403 Forbidden Access is (temporarily) forbid-
den; e.g., some parameters are
locked while a GigE Vision appli-
cation is connected.

429 Too many requests Rate limited due to excessive re-
quest frequency.

The following listing shows a sample response to a successful request that accesses information about
the rc_stereomatching node’s minconf parameter:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 157

{
"name": "minconf",
"min": 0,
"default": 0,
"max": 1,

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

276 Rev: 26.01.3
Status: Jan 30, 2026

https://curl.haxx.se

7.2. REST-API interface

(continued from previous page)

"value": 0,
"type": "float64",
"description": "Minimum confidence"

}

Note: The actual behavior, allowed requests, and specific return codes depend heavily on the spe-
cific resource, context, and action. Please refer to the rc_visard NG’s available resources (Section
7.2.2) and to each software module’s (Section 6) parameters and services.

7.2.2 Available resources and requests

The available REST-API resources are structured into the following parts:

• /nodes Access the rc_visard NG’s global Database modules (Section 6.4) with their run-time
status, parameters, and offered services, for storing data used in multiple modules, such as
load carriers, grippers and regions of interest.

• /pipelines/0/nodes Access the rc_visard NG’s 3D-camera, navigation, detection and config-
uration software modules (Section 6) with their run-time status, parameters, and offered
services.

• /pipelines Access to the status and configuration of the camera pipelines. There is always only
one camera pipeline with number 0.

• /templates Access the object templates on the rc_visard NG.

• /cad Access the cad elements, e.g. for grippers, on the rc_visard NG.

• /system Access the system state, set network configuration,

and manage licenses as well as firmware updates.

• /userspace Access the UserSpace on the rc_visard NG.

• /logs Access the log files on the rc_visard NG.

• /generic_robot_interface Access the job and hec_configs for the Generic Robot Interface on
the rc_visard NG.

7.2.2.1 Nodes, parameters, and services

Nodes represent the rc_visard NG’s software modules (Section 6), each bundling a certain algorithmic
functionality. All available global REST-API database nodes can be listed with their service calls and
parameters using

curl -X GET http://<host>/api/v2/nodes

Information about a specific node (e.g., rc_load_carrier_db) can be retrieved using

curl -X GET http://<host>/api/v2/nodes/rc_load_carrier_db

All available 3D camera, detection and configuration REST-API nodes can be listed with their service
calls and parameters using

curl -X GET http://<host>/api/v2/pipelines/0/nodes

Information about a specific node (e.g., rc_camera) can be retrieved using

curl -X GET http://<host>/api/v2/pipelines/0/nodes/rc_camera

Roboception GmbH
Manual: rc_visard_ng

277 Rev: 26.01.3
Status: Jan 30, 2026

7.2. REST-API interface

Status: During run-time, each node offers information about its current status. This includes not only
the current processing status of the module (e.g., running or stale), but most nodes also of-
fer run-time statistics or read-only parameters, so-called status values. As an example, the
rc_camera values can be retrieved using

curl -X GET http://<host>/api/v2/pipelines/0/nodes/rc_camera/status

Note: The returned status values are specific to individual nodes and are documented in the
respective software module (Section 6).

Note: The status values are only reported when the respective node is in the running state.

Parameters: Most nodes expose parameters via the rc_visard NG’s REST-API to allow their run-time
behaviors to be changed according to application context or requirements. The REST-API permits
to read and write a parameter’s value, but also provides further information such as minimum,
maximum, and default values.

As an example, the rc_stereomatching parameters can be retrieved using

curl -X GET http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters

Its quality parameter could be set to Full using

curl -X PUT http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters?quality=Full

or equivalently

curl -X PUT --header 'Content-Type: application/json' -d '{ "value": "Full" }' http://<host>
→˓/api/v2/pipelines/0/nodes/rc_stereomatching/parameters/quality

Note: Run-time parameters are specific to individual nodes and are documented in the respec-
tive software module (Section 6).

Note: Most of the parameters that nodes offer via the REST-API can be explored and tested
via the rc_visard NG’s user-friendly Web GUI (Section 7.1).

Note: Some parameters exposed via the rc_visard NG’s REST-API are also available from
the GigE Vision 2.0/GenICam image interface (Section 7.6). Please note that setting those
parameters via the REST-API or Web GUI is prohibited if a GenICam client is connected.

In addition, each node that offers run-time parameters also features a service to restore the default
values for all of its parameters.

Services: Most nodes also offer services that can be called via REST-API, e.g., to restore parameters
as discussed above, or to start and stop nodes. As an example, the services of the hand-eye
calibration module (Section 6.3.1.5) could be listed using

curl -X GET http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services

A node’s service is called by issuing a PUT request for the respective resource and providing the
service-specific arguments (see the "args" field of the Service data model , Section 7.2.3). As an
example, the stereo matching module can be triggered to do an acquisition by:

curl -X PUT --header 'Content-Type: application/json' -d '{ "args": {} }' http://<host>/api/
→˓v2/pipelines/0/nodes/rc_stereomatching/services/acquisition_trigger

Roboception GmbH
Manual: rc_visard_ng

278 Rev: 26.01.3
Status: Jan 30, 2026

7.2. REST-API interface

Note: The services and corresponding argument data models are specific to individual nodes
and are documented in the respective software module (Section 6).

The following list includes all REST-API requests regarding the global database nodes’ status, parame-
ters, and services calls:

GET /nodes
Get list of all available global nodes.

Template request

GET /api/v2/nodes HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"name": "rc_roi_db",
"parameters": [],
"services": [
"set_region_of_interest",
"get_regions_of_interest",
"delete_regions_of_interest",
"set_region_of_interest_2d",
"get_regions_of_interest_2d",
"delete_regions_of_interest_2d"

],
"status": "running"

},
{

"name": "rc_load_carrier_db",
"parameters": [],
"services": [
"set_load_carrier",
"get_load_carriers",
"delete_load_carriers"

],
"status": "running"

},
{

"name": "rc_gripper_db",
"parameters": [],
"services": [
"set_gripper",
"get_grippers",
"delete_grippers"

],
"status": "running"

}
]

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of NodeInfo)

Referenced Data Models

Roboception GmbH
Manual: rc_visard_ng

279 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API interface

• NodeInfo (Section 7.2.3)

GET /nodes/{node}
Get info on a single global node.

Template request

GET /api/v2/nodes/<node> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"name": "rc_roi_db",
"parameters": [],
"services": [

"set_region_of_interest",
"get_regions_of_interest",
"delete_regions_of_interest",
"set_region_of_interest_2d",
"get_regions_of_interest_2d",
"delete_regions_of_interest_2d"

],
"status": "running"

}

Parameters

• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns NodeInfo)

• 404 Not Found – node not found

Referenced Data Models

• NodeInfo (Section 7.2.3)

GET /nodes/{node}/services
Get descriptions of all services a global node offers.

Template request

GET /api/v2/nodes/<node>/services HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"args": {},
"description": "string",
"name": "string",
"response": {}

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

280 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

(continued from previous page)

}
]

Parameters

• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of Service)

• 404 Not Found – node not found

Referenced Data Models

• Service (Section 7.2.3)

GET /nodes/{node}/services/{service}
Get description of a global node’s specific service.

Template request

GET /api/v2/nodes/<node>/services/<service> HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"args": {},
"description": "string",
"name": "string",
"response": {}

}

Parameters

• node (string) – name of the node (required)

• service (string) – name of the service (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns Service)

• 404 Not Found – node or service not found

Referenced Data Models

• Service (Section 7.2.3)

PUT /nodes/{node}/services/{service}
Call a service of a node. The required args and resulting response depend on the specific node
and service.

Template request

Roboception GmbH
Manual: rc_visard_ng

281 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

PUT /api/v2/nodes/<node>/services/<service> HTTP/1.1
Accept: application/json application/ubjson

{}

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"args": {},
"description": "string",
"name": "string",
"response": {}

}

Parameters

• node (string) – name of the node (required)

• service (string) – name of the service (required)

Request JSON Object

• service args (object) – example args (required)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – Service call completed (returns Service)

• 403 Forbidden – Service call forbidden, e.g. because there is no valid license
for this module.

• 404 Not Found – node or service not found

Referenced Data Models

• Service (Section 7.2.3)

GET /nodes/{node}/status
Get status of a global node.

Template request

GET /api/v2/nodes/<node>/status HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "running",
"timestamp": 1503075030.2335997,
"values": []

}

Roboception GmbH
Manual: rc_visard_ng

282 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

Parameters

• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns NodeStatus)

• 404 Not Found – node not found

Referenced Data Models

• NodeStatus (Section 7.2.3)

The following list includes all REST-API requests regarding the 3D camera, detection and configuration
nodes’ status, parameters, and services calls:

GET /pipelines/{pipeline}/nodes
Get list of all available nodes.

Template request

GET /api/v2/pipelines/<pipeline>/nodes HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"name": "rc_camera",
"parameters": [
"fps",
"exp_auto",
"exp_value",
"exp_max"

],
"services": [
"reset_defaults"

],
"status": "running"

},
{

"name": "rc_hand_eye_calibration",
"parameters": [
"grid_width",
"grid_height",
"robot_mounted"

],
"services": [
"reset_defaults",
"set_pose",
"reset",
"save",
"calibrate",
"get_calibration"

],
"status": "idle"

},
{

"name": "rc_stereomatching",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

283 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

(continued from previous page)

"parameters": [
"quality",
"seg",
"fill",
"minconf",
"mindepth",
"maxdepth",
"maxdeptherr"

],
"services": [

"reset_defaults"
],
"status": "running"

}
]

Parameters

• pipeline (string) – name of the pipeline (one of 0) (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of NodeInfo)

Referenced Data Models

• NodeInfo (Section 7.2.3)

GET /pipelines/{pipeline}/nodes/{node}
Get info on a single node.

Template request

GET /api/v2/pipelines/<pipeline>/nodes/<node> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"name": "rc_camera",
"parameters": [

"fps",
"exp_auto",
"exp_value",
"exp_max"

],
"services": [
"reset_defaults"

],
"status": "running"

}

Parameters

• pipeline (string) – name of the pipeline (one of 0) (required)

• node (string) – name of the node (required)

Roboception GmbH
Manual: rc_visard_ng

284 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API interface

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns NodeInfo)

• 404 Not Found – node not found

Referenced Data Models

• NodeInfo (Section 7.2.3)

GET /pipelines/{pipeline}/nodes/{node}/parameters
Get parameters of a node.

Template request

GET /api/v2/pipelines/<pipeline>/nodes/<node>/parameters?name=<name> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"default": 25,
"description": "Frames per second in Hz",
"max": 25,
"min": 1,
"name": "fps",
"type": "float64",
"value": 25

},
{

"default": true,
"description": "Switching between auto and manual exposure",
"max": true,
"min": false,
"name": "exp_auto",
"type": "bool",
"value": true

},
{

"default": 0.007,
"description": "Maximum exposure time in s if exp_auto is true",
"max": 0.018,
"min": 6.6e-05,
"name": "exp_max",
"type": "float64",
"value": 0.007

}
]

Parameters

• pipeline (string) – name of the pipeline (one of 0) (required)

• node (string) – name of the node (required)

Query Parameters

• name (string) – limit result to parameters with name (optional)

Response Headers

Roboception GmbH
Manual: rc_visard_ng

285 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of Parameter)

• 404 Not Found – node not found

Referenced Data Models

• Parameter (Section 7.2.3)

PUT /pipelines/{pipeline}/nodes/{node}/parameters
Update multiple parameters.

Template request

PUT /api/v2/pipelines/<pipeline>/nodes/<node>/parameters HTTP/1.1
Accept: application/json application/ubjson

[
{

"name": "string",
"value": {}

}
]

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"default": 25,
"description": "Frames per second in Hz",
"max": 25,
"min": 1,
"name": "fps",
"type": "float64",
"value": 10

},
{

"default": true,
"description": "Switching between auto and manual exposure",
"max": true,
"min": false,
"name": "exp_auto",
"type": "bool",
"value": false

},
{

"default": 0.005,
"description": "Manual exposure time in s if exp_auto is false",
"max": 0.018,
"min": 6.6e-05,
"name": "exp_value",
"type": "float64",
"value": 0.005

}
]

Parameters

• pipeline (string) – name of the pipeline (one of 0) (required)

Roboception GmbH
Manual: rc_visard_ng

286 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

• node (string) – name of the node (required)

Request JSON Array of Objects

• parameters (ParameterNameValue) – array of parameters (required)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of Parameter)

• 400 Bad Request – invalid parameter value

• 403 Forbidden – Parameter update forbidden, e.g. because they are locked by
a running GigE Vision application or there is no valid license for this module.

• 404 Not Found – node not found

Referenced Data Models

• ParameterNameValue (Section 7.2.3)

• Parameter (Section 7.2.3)

GET /pipelines/{pipeline}/nodes/{node}/parameters/{param}
Get a specific parameter of a node.

Template request

GET /api/v2/pipelines/<pipeline>/nodes/<node>/parameters/<param> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"default": 25,
"description": "Frames per second in Hertz",
"max": 25,
"min": 1,
"name": "fps",
"type": "float64",
"value": 10

}

Parameters

• pipeline (string) – name of the pipeline (one of 0) (required)

• node (string) – name of the node (required)

• param (string) – name of the parameter (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns Parameter)

• 404 Not Found – node or parameter not found

Roboception GmbH
Manual: rc_visard_ng

287 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

Referenced Data Models

• Parameter (Section 7.2.3)

PUT /pipelines/{pipeline}/nodes/{node}/parameters/{param}
Update a specific parameter of a node.

Template request

PUT /api/v2/pipelines/<pipeline>/nodes/<node>/parameters/<param> HTTP/1.1
Accept: application/json application/ubjson

{
"value": {}

}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"default": 25,
"description": "Frames per second in Hertz",
"max": 25,
"min": 1,
"name": "fps",
"type": "float64",
"value": 10

}

Parameters

• pipeline (string) – name of the pipeline (one of 0) (required)

• node (string) – name of the node (required)

• param (string) – name of the parameter (required)

Request JSON Object

• parameter (ParameterValue) – parameter to be updated as JSON object (re-
quired)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns Parameter)

• 400 Bad Request – invalid parameter value

• 403 Forbidden – Parameter update forbidden, e.g. because they are locked by
a running GigE Vision application or there is no valid license for this module.

• 404 Not Found – node or parameter not found

Referenced Data Models

• Parameter (Section 7.2.3)

• ParameterValue (Section 7.2.3)

Roboception GmbH
Manual: rc_visard_ng

288 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

GET /pipelines/{pipeline}/nodes/{node}/services
Get descriptions of all services a node offers.

Template request

GET /api/v2/pipelines/<pipeline>/nodes/<node>/services HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"args": {},
"description": "Restarts the module.",
"name": "restart",
"response": {

"accepted": "bool",
"current_state": "string"

}
},
{

"args": {},
"description": "Starts the module.",
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
},
{

"args": {},
"description": "Stops the module.",
"name": "stop",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

]

Parameters

• pipeline (string) – name of the pipeline (one of 0) (required)

• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of Service)

• 404 Not Found – node not found

Referenced Data Models

• Service (Section 7.2.3)

GET /pipelines/{pipeline}/nodes/{node}/services/{service}
Get description of a node’s specific service.

Template request

Roboception GmbH
Manual: rc_visard_ng

289 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

GET /api/v2/pipelines/<pipeline>/nodes/<node>/services/<service> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"args": {

"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"slot": "int32"

},
"description": "Save a pose (grid or gripper) for later calibration.",
"name": "set_pose",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

Parameters

• pipeline (string) – name of the pipeline (one of 0) (required)

• node (string) – name of the node (required)

• service (string) – name of the service (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns Service)

• 404 Not Found – node or service not found

Referenced Data Models

• Service (Section 7.2.3)

PUT /pipelines/{pipeline}/nodes/{node}/services/{service}
Call a service of a node. The required args and resulting response depend on the specific node
and service.

Template request

PUT /api/v2/pipelines/<pipeline>/nodes/<node>/services/<service> HTTP/1.1
Accept: application/json application/ubjson

{}

Roboception GmbH
Manual: rc_visard_ng

290 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"name": "set_pose",
"response": {
"message": "Grid detected, pose stored.",
"status": 1,
"success": true

}
}

Parameters

• pipeline (string) – name of the pipeline (one of 0) (required)

• node (string) – name of the node (required)

• service (string) – name of the service (required)

Request JSON Object

• service args (object) – example args (required)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – Service call completed (returns Service)

• 403 Forbidden – Service call forbidden, e.g. because there is no valid license
for this module.

• 404 Not Found – node or service not found

Referenced Data Models

• Service (Section 7.2.3)

GET /pipelines/{pipeline}/nodes/{node}/status
Get status of a node.

Template request

GET /api/v2/pipelines/<pipeline>/nodes/<node>/status HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "running",
"timestamp": 1503075030.2335997,
"values": {
"baseline": "0.0650542",
"color": "0",
"exp": "0.00426667",
"focal": "0.844893",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

291 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

(continued from previous page)

"fps": "25.1352",
"gain": "12.0412",
"height": "960",
"temp_left": "39.6",
"temp_right": "38.2",
"time": "0.00406513",
"width": "1280"

}
}

Parameters

• pipeline (string) – name of the pipeline (one of 0) (required)

• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns NodeStatus)

• 404 Not Found – node not found

Referenced Data Models

• NodeStatus (Section 7.2.3)

7.2.2.2 UserSpace

UserSpace information including running apps and their published ports can be queried via the
userspace endpoint. An app can be of type container or compose (compose stack with potentially
multiple containers).

GET /userspace
Get UserSpace information.

Template request

GET /api/v2/userspace HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"apps": [

{
"containers": [

{
"host_ports": [
{
"port": 8888,
"protocol": "http"

}
],
"name": "hello_rc_visard_ng",
"status": "running"

}
],

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

292 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

(continued from previous page)

"image": "roboception/hello_rc_visard_ng:latest",
"name": "hello_rc_visard_ng",
"type": "container"

},
{

"containers": [
{
"host_ports": [

{
"port": 8080,
"protocol": "http"

}
],
"image": "grafana/grafana:9.5.1",
"name": "grafana",
"status": "running"

},
{
"host_ports": [

{
"port": 9090,
"protocol": "http"

}
],
"image": "prom/prometheus:v2.43.0",
"name": "prometheus",
"status": "running"

}
],
"name": "rc_visard_monitoring",
"type": "compose"

}
],
"available": true,
"enabled": true

}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns UserSpace)

Referenced Data Models

• UserSpace (Section 7.2.3)

PUT /userspace/configure
Configure UserSpace (enable, disable or reset).

Template request

PUT /api/v2/userspace/configure?action=<action> HTTP/1.1
Accept: application/json application/ubjson

Query Parameters

• action (string) – Action to take (one of enable, disable, reset) (required)

Request Headers

• Accept – application/json application/ubjson

Roboception GmbH
Manual: rc_visard_ng

293 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2

7.2. REST-API interface

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

GET /userspace/proxy
Get HTTP proxy settings for pulling container images and git repos.

Template request

GET /api/v2/userspace/proxy HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"http_proxy": "http://10.0.1.45:8080",
"https_proxy": "http://10.0.1.45:8080"

}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns ProxySettings)

Referenced Data Models

• ProxySettings (Section 7.2.3)

PUT /userspace/proxy
Set HTTP proxy settings for pulling container images and git repos.

Template request

PUT /api/v2/userspace/proxy HTTP/1.1
Accept: application/json application/ubjson

{}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"http_proxy": "http://10.0.1.45:8080",
"https_proxy": "http://10.0.1.45:8080"

}

Request JSON Object

• http_proxy (ProxySettings) – (optional)

Request Headers

• Accept – application/json application/ubjson

Response Headers

Roboception GmbH
Manual: rc_visard_ng

294 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2

7.2. REST-API interface

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns ProxySettings)

• 400 Bad Request – invalid/missing arguments

Referenced Data Models

• ProxySettings (Section 7.2.3)

7.2.2.3 System and logs

The following resources and requests expose the rc_visard NG’s system-level API. They enable

• access to log files (system-wide or module-specific)

• access to information about the device and run-time statistics such as date, MAC address, clock-
time synchronization status, and available resources;

• management of installed software licenses; and

• the rc_visard NG to be updated with a new firmware image.

GET /logs
Get list of available log files.

Template request

GET /api/v2/logs HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"date": 1503060035.0625782,
"name": "rcsense-api.log",
"size": 730

},
{

"date": 1503060035.741574,
"name": "stereo.log",
"size": 39024

},
{

"date": 1503060044.0475223,
"name": "camera.log",
"size": 1091

}
]

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns array of LogInfo)

Referenced Data Models

• LogInfo (Section 7.2.3)

Roboception GmbH
Manual: rc_visard_ng

295 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API interface

GET /logs/{log}
Get a log file. Content type of response depends on parameter ‘format’.

Template request

GET /api/v2/logs/<log>?format=<format>&limit=<limit> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"date": 1581609251.8168414,
"log": [

{
"component": "rc_gev_server",
"level": "INFO",
"message": "Application from IP 10.0.1.7 registered with control access.",
"timestamp": 1581609249.61

},
{

"component": "rc_gev_server",
"level": "INFO",
"message": "Application from IP 10.0.1.7 deregistered.",
"timestamp": 1581609249.739

},
{

"component": "rc_gev_server",
"level": "INFO",
"message": "Application from IP 10.0.1.7 registered with control access.",
"timestamp": 1581609250.94

},
{

"component": "rc_gev_server",
"level": "INFO",
"message": "Application from IP 10.0.1.7 deregistered.",
"timestamp": 1581609251.819

}
],
"name": "gev.log",
"size": 42112

}

Parameters

• log (string) – name of the log file (required)

Query Parameters

• format (string) – return log as JSON or raw (one of json, raw; default: json)
(optional)

• limit (integer) – limit to last x lines in JSON format (default: 100) (optional)

Response Headers

• Content-Type – text/plain application/json

Status Codes

• 200 OK – successful operation (returns Log)

• 404 Not Found – log not found

Referenced Data Models

Roboception GmbH
Manual: rc_visard_ng

296 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.2. REST-API interface

• Log (Section 7.2.3)

GET /system
Get system information on sensor.

Template request

GET /api/v2/system HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"dns": {

"dns_servers": [
"10.0.0.1",
"1.1.1.1"

],
"manual_dns_servers": [
"1.1.1.1"

]
},
"firmware": {

"active_image": {
"image_version": "rc_visard_v1.1.0"

},
"fallback_booted": true,
"inactive_image": {

"image_version": "rc_visard_v1.0.0"
},
"next_boot_image": "active_image"

},
"hostname": "rc-visard-ng-1421823000987",
"link_speed": 1000,
"mac": "00:14:2D:2B:D8:AB",
"ntp": {

"enabled": true,
"manual_ntp_servers": [

"10.0.0.1"
],
"offset": -3.2666e-05,
"selected_ntp_servers": [
"10.0.0.1"

],
"synchronized": true

},
"ptp_status": {

"master_ip": "",
"offset": 0,
"offset_dev": 0,
"offset_mean": 0,
"state": "off"

},
"ready": true,
"serial": "1421823000987",
"time": 1504080462.641875,
"uptime": 65457.42

}

Response Headers

Roboception GmbH
Manual: rc_visard_ng

297 Rev: 26.01.3
Status: Jan 30, 2026

7.2. REST-API interface

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns SysInfo)

Referenced Data Models

• SysInfo (Section 7.2.3)

GET /system/backup
Get backup.

Template request

GET /api/v2/system/backup?pipelines=<pipelines>&load_carriers=<load_carriers>®ions_of_

→˓interest=<regions_of_interest>&grippers=<grippers> HTTP/1.1

Query Parameters

• pipelines (boolean) – backup pipelines with node settings, i.e. parameters and
preferred_orientation (default: True) (optional)

• load_carriers (boolean) – backup load_carriers (default: True) (optional)

• regions_of_interest (boolean) – backup regions_of_interest (default: True)
(optional)

• grippers (boolean) – backup grippers (default: True) (optional)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

POST /system/backup
Restore backup.

Template request

POST /api/v2/system/backup HTTP/1.1
Accept: application/json application/ubjson

{}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"return_code": {
"message": "backup restored",
"value": 0

},
"warnings": []

}

Request JSON Object

• backup (object) – backup data as json object (required)

Request Headers

• Accept – application/json application/ubjson

Roboception GmbH
Manual: rc_visard_ng

298 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2

7.2. REST-API interface

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

GET /system/ca_certificates
Get ca-certificates.

Template request

GET /api/v2/system/ca_certificates HTTP/1.1

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation

GET /system/ca_certificates/{id}
Get ca-certificate file or details.

Template request

GET /api/v2/system/ca_certificates/<id> HTTP/1.1

Parameters

• id (string) – ID/filename without extension (required)

Response Headers

• Content-Type – application/json application/octet-stream

Status Codes

• 200 OK – successful operation

• 404 Not Found – crt file not found

PUT /system/ca_certificates/{id}
Create or update a crt file.

Template request

PUT /api/v2/system/ca_certificates/<id> HTTP/1.1
Accept: multipart/form-data application/json

Parameters

• id (string) – ID/filename without extension (required)

Form Parameters

• file – crt file (required)

Request Headers

• Accept – multipart/form-data application/json

Response Headers

• Content-Type – application/json

Status Codes

Roboception GmbH
Manual: rc_visard_ng

299 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

7.2. REST-API interface

• 200 OK – successful operation

• 400 Bad Request – crt is not valid or max number of elements reached

• 413 Request Entity Too Large – File too large

DELETE /system/ca_certificates/{id}
Remove a crt file.

Template request

DELETE /api/v2/system/ca_certificates/<id> HTTP/1.1
Accept: application/json

Parameters

• id (string) – ID/filename without extension (required)

Request Headers

• Accept – application/json

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation

• 404 Not Found – element not found

GET /system/dns
Get DNS settings.

Template request

GET /api/v2/system/dns HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"dns": {

"dns_servers": [
"10.0.0.1",
"1.1.1.1"

],
"manual_dns_servers": [
"1.1.1.1"

]
}

}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns DNS)

Referenced Data Models

• DNS (Section 7.2.3)

Roboception GmbH
Manual: rc_visard_ng

300 Rev: 26.01.3
Status: Jan 30, 2026

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API interface

PUT /system/dns
Set manual DNS servers.

Template request

PUT /api/v2/system/dns HTTP/1.1
Accept: application/json application/ubjson

{}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"dns": {

"dns_servers": [
"10.0.0.1",
"1.1.1.1"

],
"manual_dns_servers": [
"1.1.1.1"

]
}

}

Request JSON Object

• manual_dns_servers (ManualDNSServers) – Manual DNS servers (required)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns DNS)

• 400 Bad Request – invalid/missing arguments

Referenced Data Models

• DNS (Section 7.2.3)

• ManualDNSServers (Section 7.2.3)

GET /system/license
Get information about licenses installed on sensor.

Template request

GET /api/v2/system/license HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"components": {

"calibration": true,

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

301 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

7.2. REST-API interface

(continued from previous page)

"hand_eye_calibration": true,
"rectification": true,
"self_calibration": true,
"stereo": true

},
"valid": true

}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns LicenseInfo)

Referenced Data Models

• LicenseInfo (Section 7.2.3)

POST /system/license
Update license on sensor with a license file.

Template request

POST /api/v2/system/license HTTP/1.1
Accept: multipart/form-data

Form Parameters

• file – license file (required)

Request Headers

• Accept – multipart/form-data

Status Codes

• 200 OK – successful operation

• 400 Bad Request – not a valid license

GET /system/max_power_test
Get last max power test result.

Template request

GET /api/v2/system/max_power_test HTTP/1.1

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – successful operation

POST /system/max_power_test
Run max power test. Fully load GPU (and CPU) to consume max power for 10 seconds to test
the power supply. WARNING: The system might not return a response due to immediate reboot if
the power supply is insufficient.

Template request

Roboception GmbH
Manual: rc_visard_ng

302 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API interface

POST /api/v2/system/max_power_test?nocpu=<nocpu> HTTP/1.1

Query Parameters

• nocpu (boolean) – Don’t run CPU workers and only load the GPU. (optional)

Response Headers

• Content-Type – application/json

Status Codes

• 200 OK – Test finished. See return_code for result.

• 400 Bad Request – Test already running.

GET /system/network
Get current network configuration.

Template request

GET /api/v2/system/network HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"current_method": "DHCP",
"default_gateway": "10.0.3.254",
"ip_address": "10.0.1.41",
"settings": {

"dhcp_enabled": true,
"persistent_default_gateway": "",
"persistent_ip_address": "192.168.0.10",
"persistent_ip_enabled": false,
"persistent_subnet_mask": "255.255.255.0"

},
"subnet_mask": "255.255.252.0"

}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns NetworkInfo)

Referenced Data Models

• NetworkInfo (Section 7.2.3)

GET /system/network/settings
Get current network settings.

Template request

GET /api/v2/system/network/settings HTTP/1.1

Sample response

Roboception GmbH
Manual: rc_visard_ng

303 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API interface

HTTP/1.1 200 OK
Content-Type: application/json

{
"dhcp_enabled": true,
"persistent_default_gateway": "",
"persistent_ip_address": "192.168.0.10",
"persistent_ip_enabled": false,
"persistent_subnet_mask": "255.255.255.0"

}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns NetworkSettings)

Referenced Data Models

• NetworkSettings (Section 7.2.3)

PUT /system/network/settings
Set current network settings.

Template request

PUT /api/v2/system/network/settings HTTP/1.1
Accept: application/json application/ubjson

{}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"dhcp_enabled": true,
"persistent_default_gateway": "",
"persistent_ip_address": "192.168.0.10",
"persistent_ip_enabled": false,
"persistent_subnet_mask": "255.255.255.0"

}

Request JSON Object

• settings (NetworkSettings) – network settings to apply (required)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns NetworkSettings)

• 400 Bad Request – invalid/missing arguments

• 403 Forbidden – Changing network settings forbidden because this is locked by
a running GigE Vision application.

Roboception GmbH
Manual: rc_visard_ng

304 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

7.2. REST-API interface

Referenced Data Models

• NetworkSettings (Section 7.2.3)

GET /system/ntp
Get NTP settings.

Template request

GET /api/v2/system/ntp HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"ntp": {

"enabled": true,
"manual_ntp_servers": [

"10.0.0.1"
],
"offset": -3.2666e-05,
"selected_ntp_servers": [
"10.0.0.1"

],
"synchronized": true

}
}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns NTP)

Referenced Data Models

• NTP (Section 7.2.3)

PUT /system/ntp
Set manual NTP servers.

Template request

PUT /api/v2/system/ntp HTTP/1.1
Accept: application/json application/ubjson

{}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"ntp": {

"enabled": true,
"manual_ntp_servers": [

"10.0.0.1"
],
"offset": -3.2666e-05,

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

305 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API interface

(continued from previous page)

"selected_ntp_servers": [
"10.0.0.1"

],
"synchronized": true

}
}

Request JSON Object

• manual_ntp_servers (ManualNTPServers) – Manual NTP servers (required)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns NTP)

• 400 Bad Request – invalid/missing arguments

Referenced Data Models

• NTP (Section 7.2.3)

• ManualNTPServers (Section 7.2.3)

PUT /system/reboot
Reboot the device.

Template request

PUT /api/v2/system/reboot HTTP/1.1

Status Codes

• 200 OK – successful operation

GET /system/rollback
Get information about currently active and inactive firmware/system images on device.

Template request

GET /api/v2/system/rollback HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"active_image": {
"image_version": "rc_visard_ng_v22.10.0"

},
"fallback_booted": false,
"inactive_image": {
"image_version": "rc_visard_ng_v22.10.0"

},
"next_boot_image": "active_image"

}

Roboception GmbH
Manual: rc_visard_ng

306 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API interface

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns FirmwareInfo)

Referenced Data Models

• FirmwareInfo (Section 7.2.3)

PUT /system/rollback
Rollback to previous firmware version (inactive system image).

Template request

PUT /api/v2/system/rollback HTTP/1.1

Status Codes

• 200 OK – successful operation

• 400 Bad Request – already set to use inactive partition on next boot

• 500 Internal Server Error – internal error

GET /system/time
Get system time in UTC as string with format “YYYY-MM-DD hh:mm:ss”

Template request

GET /api/v2/system/time HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"utc": "2023-10-05 08:35:26"

}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

PUT /system/time
Set system time in UTC as string with format “YYYY-MM-DD hh:mm:ss”

Template request

PUT /api/v2/system/time?utc=<utc> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"utc": "2023-10-05 08:35:26"

}

Roboception GmbH
Manual: rc_visard_ng

307 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API interface

Query Parameters

• utc (string) – Time in UTC as string with format “YYYY-MM-DD hh:mm:ss”
(required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

• 400 Bad Request – invalid/missing arguments

• 403 Forbidden – Changing time forbidden because time is synchronized via
NTP or PTP.

GET /system/ui_lock
Get UI lock status.

Template request

GET /api/v2/system/ui_lock HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"enabled": false

}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns UILock)

Referenced Data Models

• UILock (Section 7.2.3)

DELETE /system/ui_lock
Remove UI lock.

Template request

DELETE /api/v2/system/ui_lock HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"enabled": false,
"valid": false

}

Response Headers

• Content-Type – application/json application/ubjson

Roboception GmbH
Manual: rc_visard_ng

308 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

7.2. REST-API interface

Status Codes

• 200 OK – successful operation

POST /system/ui_lock
Verify or set UI lock.

Template request

POST /api/v2/system/ui_lock?hash=<hash>&set=<set> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"enabled": true,
"valid": true

}

Query Parameters

• hash (string) – hash of the UI lock password (required)

• set (boolean) – set new hash instead of veryfing (optional)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

GET /system/update
Get information about currently active and inactive firmware/system images on device.

Template request

GET /api/v2/system/update HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"active_image": {
"image_version": "rc_visard_ng_v22.10.0"

},
"fallback_booted": false,
"inactive_image": {
"image_version": "rc_visard_ng_v22.10.0"

},
"next_boot_image": "active_image"

}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation (returns FirmwareInfo)

Roboception GmbH
Manual: rc_visard_ng

309 Rev: 26.01.3
Status: Jan 30, 2026

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.2. REST-API interface

Referenced Data Models

• FirmwareInfo (Section 7.2.3)

POST /system/update
Update firmware/system image with a mender artifact. Reboot is required afterwards in order to
activate updated firmware version.

Template request

POST /api/v2/system/update HTTP/1.1
Accept: multipart/form-data

Form Parameters

• file – mender artifact file (required)

Request Headers

• Accept – multipart/form-data

Status Codes

• 200 OK – successful operation

• 400 Bad Request – client error, e.g. no valid mender artifact

7.2.3 Data type definitions

The REST-API defines the following data models, which are used to access or modify the available
resources (Section 7.2.2) either as required attributes/parameters of the requests or as return types.

DNS: DNS settings.

An object of type DNS has the following properties:

• dns_servers (array of string)

• manual_dns_servers (array of string)

Template object

{
"dns_servers": [

"string",
"string"

],
"manual_dns_servers": [

"string",
"string"

]
}

DNS objects are nested in SysInfo, and are used in the following requests:

• GET /system/dns

• PUT /system/dns

FirmwareInfo: Information about currently active and inactive firmware images, and what image is/will
be booted.

An object of type FirmwareInfo has the following properties:

• active_image (ImageInfo) - see description of ImageInfo

• fallback_booted (boolean) - true if desired image could not be booted and fallback boot to
the previous image occurred

Roboception GmbH
Manual: rc_visard_ng

310 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

7.2. REST-API interface

• inactive_image (ImageInfo) - see description of ImageInfo

• next_boot_image (string) - firmware image that will be booted next time (one of
active_image, inactive_image)

Template object

{
"active_image": {
"image_version": "string"

},
"fallback_booted": false,
"inactive_image": {
"image_version": "string"

},
"next_boot_image": "string"

}

FirmwareInfo objects are nested in SysInfo, and are used in the following requests:

• GET /system/rollback

• GET /system/update

GripperElement: CAD gripper element

An object of type GripperElement has the following properties:

• id (string) - Unique identifier of the element

Template object

{
"id": "string"

}

GripperElement objects are used in the following requests:

• GET /cad/gripper_elements

• GET /cad/gripper_elements/{id}

• PUT /cad/gripper_elements/{id}

HostPort: Port exposed on host

An object of type HostPort has the following properties:

• port (integer)

• protocol (string)

Template object

{
"port": 0,
"protocol": "string"

}

HostPort objects are nested in UserSpaceContainer .

ImageInfo: Information about specific firmware image.

An object of type ImageInfo has the following properties:

• image_version (string) - image version

Template object

Roboception GmbH
Manual: rc_visard_ng

311 Rev: 26.01.3
Status: Jan 30, 2026

7.2. REST-API interface

{
"image_version": "string"

}

ImageInfo objects are nested in FirmwareInfo.

LicenseComponentConstraint: Constraints on the module version.

An object of type LicenseComponentConstraint has the following properties:

• max_version (string) - optional maximum supported version (exclusive)

• min_version (string) - optional minimum supported version (inclusive)

Template object

{
"max_version": "string",
"min_version": "string"

}

LicenseComponentConstraint objects are nested in LicenseConstraints.

LicenseComponents: List of the licensing status of the individual software modules. The respective
flag is true if the module is unlocked with the currently applied software license.

An object of type LicenseComponents has the following properties:

• hand_eye_calibration (boolean) - hand-eye calibration module

• rectification (boolean) - image rectification module

• stereo (boolean) - stereo matching module

Template object

{
"hand_eye_calibration": false,
"rectification": false,
"stereo": false

}

LicenseComponents objects are nested in LicenseInfo.

LicenseConstraints: Version constrains for modules.

An object of type LicenseConstraints has the following properties:

• image_version (LicenseComponentConstraint) - see description of LicenseComponentCon-
straint

Template object

{
"image_version": {

"max_version": "string",
"min_version": "string"

}
}

LicenseConstraints objects are nested in LicenseInfo.

LicenseInfo: Information about the currently applied software license on the device.

An object of type LicenseInfo has the following properties:

• components (LicenseComponents) - see description of LicenseComponents

• components_constraints (LicenseConstraints) - see description of LicenseConstraints

Roboception GmbH
Manual: rc_visard_ng

312 Rev: 26.01.3
Status: Jan 30, 2026

7.2. REST-API interface

• valid (boolean) - indicates whether the license is valid or not

Template object

{
"components": {

"hand_eye_calibration": false,
"rectification": false,
"stereo": false

},
"components_constraints": {
"image_version": {

"max_version": "string",
"min_version": "string"

}
},
"valid": false

}

LicenseInfo objects are used in the following requests:

• GET /system/license

Log: Content of a specific log file represented in JSON format.

An object of type Log has the following properties:

• date (float) - UNIX time when log was last modified

• log (array of LogEntry) - the actual log entries

• name (string) - name of log file

• size (integer) - size of log file in bytes

Template object

{
"date": 0,
"log": [

{
"component": "string",
"level": "string",
"message": "string",
"timestamp": 0

},
{

"component": "string",
"level": "string",
"message": "string",
"timestamp": 0

}
],
"name": "string",
"size": 0

}

Log objects are used in the following requests:

• GET /logs/{log}

LogEntry: Representation of a single log entry in a log file.

An object of type LogEntry has the following properties:

• component (string) - module name that created this entry

• level (string) - log level (one of DEBUG, INFO, WARN, ERROR, FATAL)

Roboception GmbH
Manual: rc_visard_ng

313 Rev: 26.01.3
Status: Jan 30, 2026

7.2. REST-API interface

• message (string) - actual log message

• timestamp (float) - Unix time of log entry

Template object

{
"component": "string",
"level": "string",
"message": "string",
"timestamp": 0

}

LogEntry objects are nested in Log.

LogInfo: Information about a specific log file.

An object of type LogInfo has the following properties:

• date (float) - UNIX time when log was last modified

• name (string) - name of log file

• size (integer) - size of log file in bytes

Template object

{
"date": 0,
"name": "string",
"size": 0

}

LogInfo objects are used in the following requests:

• GET /logs

ManualDNSServers: List of manual DNS servers.

An object of type ManualDNSServers has the following properties:

• manual_dns_servers (array of string)

Template object

{
"manual_dns_servers": [

"string",
"string"

]
}

ManualDNSServers objects are used in the following requests:

• PUT /system/dns

ManualNTPServers: List of manual NTP servers.

An object of type ManualNTPServers has the following properties:

• manual_ntp_servers (array of string)

Template object

{
"manual_ntp_servers": [

"string",
"string"

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

314 Rev: 26.01.3
Status: Jan 30, 2026

7.2. REST-API interface

(continued from previous page)

]
}

ManualNTPServers objects are used in the following requests:

• PUT /system/ntp

NTP: Status of the NTP time sync.

An object of type NTP has the following properties:

• enabled (boolean) - NTP is enabled

• manual_ntp_servers (array of string)

• offset (string) - time sync offset reported by NTP

• selected_ntp_servers (array of string)

• synchronized (boolean) - synchronized with NTP server

Template object

{
"enabled": false,
"manual_ntp_servers": [

"string",
"string"

],
"offset": "string",
"selected_ntp_servers": [
"string",
"string"

],
"synchronized": false

}

NTP objects are nested in SysInfo, and are used in the following requests:

• GET /system/ntp

• PUT /system/ntp

NetworkInfo: Current network configuration.

An object of type NetworkInfo has the following properties:

• current_method (string) - method by which current settings were applied (one of INIT,
LinkLocal, DHCP, PersistentIP, TemporaryIP)

• default_gateway (string) - current default gateway

• ip_address (string) - current IP address

• settings (NetworkSettings) - see description of NetworkSettings

• subnet_mask (string) - current subnet mask

Template object

{
"current_method": "string",
"default_gateway": "string",
"ip_address": "string",
"settings": {

"dhcp_enabled": false,
"persistent_default_gateway": "string",
"persistent_ip_address": "string",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

315 Rev: 26.01.3
Status: Jan 30, 2026

7.2. REST-API interface

(continued from previous page)

"persistent_ip_enabled": false,
"persistent_subnet_mask": "string"

},
"subnet_mask": "string"

}

NetworkInfo objects are nested in SysInfo, and are used in the following requests:

• GET /system/network

NetworkSettings: Current network settings.

An object of type NetworkSettings has the following properties:

• dhcp_enabled (boolean) - DHCP enabled

• persistent_default_gateway (string) - Persistent default gateway

• persistent_ip_address (string) - Persistent IP address

• persistent_ip_enabled (boolean) - Persistent IP enabled

• persistent_subnet_mask (string) - Persistent subnet mask

Template object

{
"dhcp_enabled": false,
"persistent_default_gateway": "string",
"persistent_ip_address": "string",
"persistent_ip_enabled": false,
"persistent_subnet_mask": "string"

}

NetworkSettings objects are nested in NetworkInfo, and are used in the following requests:

• GET /system/network/settings

• PUT /system/network/settings

NodeInfo: Description of a computational node running on device.

An object of type NodeInfo has the following properties:

• name (string) - name of the node

• parameters (array of string) - list of the node’s run-time parameters

• services (array of string) - list of the services this node offers

• status (string) - status of the node (one of unknown, down, idle, running)

Template object

{
"name": "string",
"parameters": [

"string",
"string"

],
"services": [

"string",
"string"

],
"status": "string"

}

NodeInfo objects are used in the following requests:

Roboception GmbH
Manual: rc_visard_ng

316 Rev: 26.01.3
Status: Jan 30, 2026

7.2. REST-API interface

• GET /nodes

• GET /nodes/{node}

• GET /pipelines/{pipeline}/nodes

• GET /pipelines/{pipeline}/nodes/{node}

NodeStatus: Detailed current status of the node including run-time statistics.

An object of type NodeStatus has the following properties:

• status (string) - status of the node (one of unknown, down, idle, running)

• timestamp (float) - Unix time when values were last updated

• values (object) - dictionary with current status/statistics of the node

Template object

{
"status": "string",
"timestamp": 0,
"values": {}

}

NodeStatus objects are used in the following requests:

• GET /nodes/{node}/status

• GET /pipelines/{pipeline}/nodes/{node}/status

Parameter: Representation of a node’s run-time parameter. The parameter’s ‘value’ type (and hence
the types of the ‘min’, ‘max’ and ‘default’ fields) can be inferred from the ‘type’ field and might be
one of the built-in primitive data types.

An object of type Parameter has the following properties:

• default (type not defined) - the parameter’s default value

• description (string) - description of the parameter

• max (type not defined) - maximum value this parameter can be assigned to

• min (type not defined) - minimum value this parameter can be assigned to

• name (string) - name of the parameter

• type (string) - the parameter’s primitive type represented as string (one of bool, int8, uint8,
int16, uint16, int32, uint32, int64, uint64, float32, float64, string)

• value (type not defined) - the parameter’s current value

Template object

{
"default": {},
"description": "string",
"max": {},
"min": {},
"name": "string",
"type": "string",
"value": {}

}

Parameter objects are used in the following requests:

• GET /pipelines/{pipeline}/nodes/{node}/parameters

• PUT /pipelines/{pipeline}/nodes/{node}/parameters

• GET /pipelines/{pipeline}/nodes/{node}/parameters/{param}

Roboception GmbH
Manual: rc_visard_ng

317 Rev: 26.01.3
Status: Jan 30, 2026

7.2. REST-API interface

• PUT /pipelines/{pipeline}/nodes/{node}/parameters/{param}

ParameterNameValue: Parameter name and value. The parameter’s ‘value’ type (and hence the types
of the ‘min’, ‘max’ and ‘default’ fields) can be inferred from the ‘type’ field and might be one of the
built-in primitive data types.

An object of type ParameterNameValue has the following properties:

• name (string) - name of the parameter

• value (type not defined) - the parameter’s current value

Template object

{
"name": "string",
"value": {}

}

ParameterNameValue objects are used in the following requests:

• PUT /pipelines/{pipeline}/nodes/{node}/parameters

ParameterValue: Parameter value. The parameter’s ‘value’ type (and hence the types of the ‘min’,
‘max’ and ‘default’ fields) can be inferred from the ‘type’ field and might be one of the built-in
primitive data types.

An object of type ParameterValue has the following properties:

• value (type not defined) - the parameter’s current value

Template object

{
"value": {}

}

ParameterValue objects are used in the following requests:

• PUT /pipelines/{pipeline}/nodes/{node}/parameters/{param}

ProxySettings: HTTP proxy settings for pulling container images and git repos

An object of type ProxySettings has the following properties:

• http_proxy (string) - HTTP proxy

• https_proxy (string) - HTTPS proxy

Template object

{
"http_proxy": "string",
"https_proxy": "string"

}

ProxySettings objects are nested in UserSpace, and are used in the following requests:

• GET /userspace/proxy

• PUT /userspace/proxy

PtpStatus: Status of the IEEE1588 (PTP) time sync.

An object of type PtpStatus has the following properties:

• master_ip (string) - IP of the master clock

• offset (float) - time offset in seconds to the master

• offset_dev (float) - standard deviation of time offset in seconds to the master

Roboception GmbH
Manual: rc_visard_ng

318 Rev: 26.01.3
Status: Jan 30, 2026

7.2. REST-API interface

• offset_mean (float) - mean time offset in seconds to the master

• state (string) - state of PTP (one of off, unknown, INITIALIZING, FAULTY, DISABLED,
LISTENING, PASSIVE, UNCALIBRATED, SLAVE)

Template object

{
"master_ip": "string",
"offset": 0,
"offset_dev": 0,
"offset_mean": 0,
"state": "string"

}

PtpStatus objects are nested in SysInfo.

Service: Representation of a service that a node offers.

An object of type Service has the following properties:

• args (ServiceArgs) - see description of ServiceArgs

• description (string) - short description of this service

• name (string) - name of the service

• response (ServiceResponse) - see description of ServiceResponse

Template object

{
"args": {},
"description": "string",
"name": "string",
"response": {}

}

Service objects are used in the following requests:

• GET /nodes/{node}/services

• GET /nodes/{node}/services/{service}

• PUT /nodes/{node}/services/{service}

• GET /pipelines/{pipeline}/nodes/{node}/services

• GET /pipelines/{pipeline}/nodes/{node}/services/{service}

• PUT /pipelines/{pipeline}/nodes/{node}/services/{service}

ServiceArgs: Arguments required to call a service with. The general representation of these argu-
ments is a (nested) dictionary. The specific content of this dictionary depends on the respective
node and service call.

ServiceArgs objects are nested in Service.

ServiceResponse: The response returned by the service call. The general representation of this re-
sponse is a (nested) dictionary. The specific content of this dictionary depends on the respective
node and service call.

ServiceResponse objects are nested in Service.

SysInfo: System information about the device.

An object of type SysInfo has the following properties:

• dns (DNS) - see description of DNS

• firmware (FirmwareInfo) - see description of FirmwareInfo

Roboception GmbH
Manual: rc_visard_ng

319 Rev: 26.01.3
Status: Jan 30, 2026

7.2. REST-API interface

• hostname (string) - Hostname

• link_speed (integer) - Ethernet link speed in Mbps

• mac (string) - MAC address

• network (NetworkInfo) - see description of NetworkInfo

• ntp (NTP) - see description of NTP

• ptp_status (PtpStatus) - see description of PtpStatus

• ready (boolean) - system is fully booted and ready

• serial (string) - device serial number

• time (float) - system time as Unix timestamp

• ui_lock (UILock) - see description of UILock

• uptime (float) - system uptime in seconds

Template object

{
"dns": {

"dns_servers": [
"string",
"string"

],
"manual_dns_servers": [
"string",
"string"

]
},
"firmware": {

"active_image": {
"image_version": "string"

},
"fallback_booted": false,
"inactive_image": {
"image_version": "string"

},
"next_boot_image": "string"

},
"hostname": "string",
"link_speed": 0,
"mac": "string",
"network": {
"current_method": "string",
"default_gateway": "string",
"ip_address": "string",
"settings": {

"dhcp_enabled": false,
"persistent_default_gateway": "string",
"persistent_ip_address": "string",
"persistent_ip_enabled": false,
"persistent_subnet_mask": "string"

},
"subnet_mask": "string"

},
"ntp": {
"enabled": false,
"manual_ntp_servers": [

"string",
"string"

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

320 Rev: 26.01.3
Status: Jan 30, 2026

7.2. REST-API interface

(continued from previous page)

],
"offset": "string",
"selected_ntp_servers": [
"string",
"string"

],
"synchronized": false

},
"ptp_status": {

"master_ip": "string",
"offset": 0,
"offset_dev": 0,
"offset_mean": 0,
"state": "string"

},
"ready": false,
"serial": "string",
"time": 0,
"ui_lock": {
"enabled": false

},
"uptime": 0

}

SysInfo objects are used in the following requests:

• GET /system

Template: Detection template

An object of type Template has the following properties:

• id (string) - Unique identifier of the template

Template object

{
"id": "string"

}

Template objects are used in the following requests:

• GET /templates/rc_boxpick

• GET /templates/rc_boxpick/{id}

• PUT /templates/rc_boxpick/{id}

• GET /templates/rc_cadmatch

• GET /templates/rc_cadmatch/{id}

• PUT /templates/rc_cadmatch/{id}

• GET /templates/rc_silhouettematch

• GET /templates/rc_silhouettematch/{id}

• PUT /templates/rc_silhouettematch/{id}

UILock: UI lock status.

An object of type UILock has the following properties:

• enabled (boolean)

Template object

Roboception GmbH
Manual: rc_visard_ng

321 Rev: 26.01.3
Status: Jan 30, 2026

7.2. REST-API interface

{
"enabled": false

}

UILock objects are nested in SysInfo, and are used in the following requests:

• GET /system/ui_lock

UserSpace: UserSpace information

An object of type UserSpace has the following properties:

• apps (array of UserSpaceApp) - UserSpace apps

• available (boolean) - UserSpace available

• enabled (boolean) - UserSpace enabled

• proxy (ProxySettings) - see description of ProxySettings

Template object

{
"apps": [

{
"containers": [

{
"description": "string",
"health": "string",
"host_ports": [
{
"port": 0,
"protocol": "string"

},
{
"port": 0,
"protocol": "string"

}
],
"image": "string",
"name": "string",
"status": "string",
"title": "string",
"url": "string",
"vendor": "string",
"version": "string"

},
{
"description": "string",
"health": "string",
"host_ports": [
{

"port": 0,
"protocol": "string"

},
{

"port": 0,
"protocol": "string"

}
],
"image": "string",
"name": "string",
"status": "string",
"title": "string",
"url": "string",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

322 Rev: 26.01.3
Status: Jan 30, 2026

7.2. REST-API interface

(continued from previous page)

"vendor": "string",
"version": "string"

}
],
"name": "string",
"type": "string"

},
{

"containers": [
{
"description": "string",
"health": "string",
"host_ports": [
{
"port": 0,
"protocol": "string"

},
{
"port": 0,
"protocol": "string"

}
],
"image": "string",
"name": "string",
"status": "string",
"title": "string",
"url": "string",
"vendor": "string",
"version": "string"

},
{
"description": "string",
"health": "string",
"host_ports": [
{
"port": 0,
"protocol": "string"

},
{
"port": 0,
"protocol": "string"

}
],
"image": "string",
"name": "string",
"status": "string",
"title": "string",
"url": "string",
"vendor": "string",
"version": "string"

}
],
"name": "string",
"type": "string"

}
],
"available": false,
"enabled": false,
"proxy": {

"http_proxy": "string",
"https_proxy": "string"

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

323 Rev: 26.01.3
Status: Jan 30, 2026

7.2. REST-API interface

(continued from previous page)

}
}

UserSpace objects are used in the following requests:

• GET /userspace

UserSpaceApp: UserSpace app

An object of type UserSpaceApp has the following properties:

• containers (array of UserSpaceContainer) - containers in this app

• name (string) - name of the app

• type (string) - type of the app (one of container, compose)

Template object

{
"containers": [

{
"description": "string",
"health": "string",
"host_ports": [

{
"port": 0,
"protocol": "string"

},
{
"port": 0,
"protocol": "string"

}
],
"image": "string",
"name": "string",
"status": "string",
"title": "string",
"url": "string",
"vendor": "string",
"version": "string"

},
{

"description": "string",
"health": "string",
"host_ports": [

{
"port": 0,
"protocol": "string"

},
{
"port": 0,
"protocol": "string"

}
],
"image": "string",
"name": "string",
"status": "string",
"title": "string",
"url": "string",
"vendor": "string",
"version": "string"

}
],

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

324 Rev: 26.01.3
Status: Jan 30, 2026

7.2. REST-API interface

(continued from previous page)

"name": "string",
"type": "string"

}

UserSpaceApp objects are nested in UserSpace.

UserSpaceContainer: container

An object of type UserSpaceContainer has the following properties:

• description (string) - value of label org.opencontainers.image.description

• health (string) - health of the container (if container has healthcheck) (one of starting,
healthy, unhealthy)

• host_ports (array of HostPort) - Ports exposed on host

• image (string) - container image tag (or id if not tagged)

• name (string) - name of the container

• status (string) - status of the container (one of restarting, running, paused, exited)

• title (string) - value of label org.opencontainers.image.title

• url (string) - value of label org.opencontainers.image.url

• vendor (string) - value of label org.opencontainers.image.vendor

• version (string) - value of label org.opencontainers.image.version

Template object

{
"description": "string",
"health": "string",
"host_ports": [
{

"port": 0,
"protocol": "string"

},
{

"port": 0,
"protocol": "string"

}
],
"image": "string",
"name": "string",
"status": "string",
"title": "string",
"url": "string",
"vendor": "string",
"version": "string"

}

UserSpaceContainer objects are nested in UserSpaceApp.

7.2.4 Swagger UI

The rc_visard NG’s Swagger UI allows developers to easily visualize and interact with the REST-API,
e.g., for development and testing. Accessing http://<host>/api/ or http://<host>/api/swagger (the
former will automatically be redirected to the latter) opens a visualization of the rc_visard NG’s general
API structure including all available resources and requests (Section 7.2.2) and offers a simple user
interface for exploring all of its features.

Roboception GmbH
Manual: rc_visard_ng

325 Rev: 26.01.3
Status: Jan 30, 2026

https://swagger.io/

7.2. REST-API interface

Note: Users must be aware that, although the rc_visard NG’s Swagger UI is designed to explore
and test the REST-API, it is a fully functional interface. That is, any issued requests are actually
processed and particularly PUT, POST, and DELETE requests might change the overall status and/or
behavior of the device.

Fig. 7.2: Initial view of the rc_visard NG’s Swagger UI with its resources and requests

Roboception GmbH
Manual: rc_visard_ng

326 Rev: 26.01.3
Status: Jan 30, 2026

7.2. REST-API interface

Using this interface, available resources and requests can be explored by clicking on them to uncollapse
or recollapse them. The following figure shows an example of how to get a node’s current status by
filling in the necessary parameters (pipeline number and node name) and clicking Execute. This action
results in the Swagger UI showing, amongst others, the actual curl command that was executed when
issuing the request as well as the response body showing the current status of the requested node in a
JSON-formatted string.

Fig. 7.3: Result of requesting the rc_stereomatching node’s status

Roboception GmbH
Manual: rc_visard_ng

327 Rev: 26.01.3
Status: Jan 30, 2026

7.2. REST-API interface

Some actions, such as setting parameters or calling services, require more complex parameters to an
HTTP request. The Swagger UI allows developers to explore the attributes required for these actions
during run-time, as shown in the next example. In the figure below, the attributes required for the
the rc_hand_eye_calibration node’s set_pose service are explored by performing a GET request on
this resource. The response features a full description of the service offered, including all required
arguments with their names and types as a JSON-formatted string.

Fig. 7.4: The result of the GET request on the set_pose service shows the required arguments for this
service call.

Users can easily use this preformatted JSON string as a template for the service arguments to actually
call the service:

Roboception GmbH
Manual: rc_visard_ng

328 Rev: 26.01.3
Status: Jan 30, 2026

7.3. Generic Robot Interface

Fig. 7.5: Filling in the arguments of the set_pose service request

7.3 Generic Robot Interface

The Generic Robot Interface (GRI) is an integration layer that bridges the REST-API v2 (Section 7.2)
and provides a standardized way to communicate with the software modules using simple TCP socket
communication on port 7100. It can be activated via a separate license (Section 9.4).

The GRI enables the user to create configurations and save them as numbered jobs. These jobs can
be triggered by simple commands from the robot using TCP socket communication. The GRI internally
manages the REST-API communication and delivers the selected pose results in a format that can be
chosen specifically for the robot.

7.3.1 Job definition

Jobs are pre-configured tasks that can be triggered by the robot application. Each job has a unique ID
and contains all the necessary information for a specific operation, e.g. computing grasps for bin picking
or changing run-time parameters of a module. Once configured, the robot can execute these jobs using
simple socket commands and, if applicable, receive the returned poses.

7.3.1.1 Job Types

The Generic Robot Interface supports three types of jobs:

Pipeline service job (CALL_PIPELINE_SERVICE)

This job calls a service on a specific camera pipeline, e.g. to detect objects or compute grasps, and
returns pose data to the robot (e.g. grasp poses).

Roboception GmbH
Manual: rc_visard_ng

329 Rev: 26.01.3
Status: Jan 30, 2026

7.3. Generic Robot Interface

A pipeline service job consists of:

• job_type: the job type CALL_PIPELINE_SERVICE

• name: name of the job (descriptive name to distinguish jobs)

• pipeline: the camera pipeline to be used for the job (e.g. “0”)

• node: the REST-API name of the pipeline node that should be used (e.g. rc_load_carrier)

• service: the REST-API name of the service to call

• args: the REST-API json arguments to pass to the service

• selected_return: the REST-API name of the field to return

A sample pipeline service job definition is:

{
"args": {

"pose_frame": "external",
"suction_surface_length": 0.02,
"suction_surface_width": 0.02

},
"job_type": "CALL_PIPELINE_SERVICE",
"name": "Compute Grasps",
"node": "rc_itempick",
"pipeline": "0",
"selected_return": "grasps",
"service": "compute_grasps"

}

The available values for selected_return depend on the chosen node and can be e.g. grasps or
matches. Refer to the service definitions of the corresponding module for details about node, service,
args and selected_return.

Global service job (CALL_GLOBAL_SERVICE)

This job calls a service that is not tied to a specific pipeline, e.g. database services for setting regions
of interest or load carriers. Global service jobs do not return any poses.

A global service job consists of:

• job_type: the job type CALL_GLOBAL_SERVICE

• name: name of the job (descriptive name to distinguish jobs)

• node: the REST-API name of the global node that should be used (e.g. rc_load_carrier_db)

• service: the REST-API name of the service to call

• args: the REST-API json arguments to pass to the service

A sample global job definition is:

{
"args": {

"region_of_interest_2d": {
"id": "2d_roi",
"width": 526,
"height": 501,
"offset_x": 558,
"offset_y": 307

}
},
"job_type": "CALL_GLOBAL_SERVICE",
"name": "Set 2D ROI",
"node": "rc_roi_db",

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

330 Rev: 26.01.3
Status: Jan 30, 2026

7.3. Generic Robot Interface

(continued from previous page)

"service": "set_region_of_interest_2d"
}

Refer to the service definitions of the corresponding module for details about node, service and args.

Parameter setting job (SET_PIPELINE_PARAMETER)

This job sets run-time parameters on pipeline nodes, e.g. for adjusting camera or detection module
settings. Parameter setting services do not return any poses.

A parameter setting job consists of:

• job_type: the job type SET_PIPELINE_PARAMETER

• name: name of the job (descriptive name to distinguish jobs)

• pipeline: the camera pipeline to be used for the job (e.g. “0”)

• node: the REST-API name of the pipeline node that should be used (e.g. rc_stereomatching)

• parameters: the parameters to set as key-value pairs

A sample parameter job definition is:

{
"job_type": "SET_PIPELINE_PARAMETERS",
"name": "Set Stereo Parameters",
"node": "rc_stereomatching",
"parameters": {

"maxdepth": 2,
"quality": "High"

},
"pipeline": "0"

}

Refer to the run-time parameter definitions of the corresponding module for details about node and
parameters.

The jobs can be defined via the Web GUI or via the REST-API (see Job and HEC_config API).

7.3.1.2 Primary and related objects

The primary objects are the selected_return objects, e.g. grasps. The related objects are then the
items or matches that correspond to the returned grasp. While a primary object grasp as exactly one
related object item or match, a primary object match can have multiple related objects grasps.

7.3.1.3 Execution modes

The Generic Robot Interface supports two execution modes to optimize the robot’s cycle time:

• Synchronous Execution: The robot triggers a job and waits for the first result to arrive. This mode
should be chosen when results are required immediately.

• Asynchronous Execution: The robot starts a job and can continue with other operations while the
job is running in the background. The job status can be queried and results can be retrieved when
ready. This mode maximizes efficiency during long detection times.

7.3.2 Hand-Eye Calibration

A hand-eye calibration configuration can be defined for each camera pipeline to allow for programmatic
hand-eye calibration using the GRI. Each hand-eye calibration configuration consists of the following
information:

Roboception GmbH
Manual: rc_visard_ng

331 Rev: 26.01.3
Status: Jan 30, 2026

7.3. Generic Robot Interface

• grid_height: height of the calibration grid in meters

• grid_width: width of the calibration grid in meters

• robot_mounted: boolean that determines whether the camera is mounted on the robot

• tcp_offset: 0 for 6DOF robots. For 4DOF robots: the signed offset from the TCP to the camera
coordinate system (robot-mounted sensor) or the visible surface of the calibration grid (statically
mounted sensor) along the TCP rotation axis in meters.

• tcp_rotation_axis: -1 for 6DOF robots. For 4DOF robots: determines the axis of the robot frame
around which the robot can rotate its TCP (0 is used for X, 1 for Y and 2 for the Z axis).

More detailed information about these settings and the hand-eye calibration in general is given in Hand-
eye calibration.

The hand-eye calibration configurations can be set via the Web GUI or via the REST-API (see Job and
HEC_config API).

7.3.3 GRI binary protocol specification

This specification defines the exact on-wire format for client-server messages. A message consists of a
fixed 8-byte header and a body whose layout depends on the protocol version. Currently, there is only
protocol version 1.

Note: All multi-byte integers are little-endian. Types are uint8 (8-bit unsigned), int16 (16-bit
signed), int32 (32-bit signed).

7.3.3.1 Message header (8 bytes)

Table 7.1: Message header definition
Field Type Size Description
magic_number uint32 4 ASCII tag “GRI0”, bytes 47 52 49 00 (little-endian)
protocol_version uint8 1 Protocol version: currently 1
message_length uint8 1 Total message size (bytes), incl. header + body
pose_format uint8 1 Pose data format (see Pose formats)
action uint8 1 Command/action (see Actions)

7.3.3.2 Pose formats

The GRI always uses millimeters for representing a position. The following tables show different rota-
tion formats that can be chosen to match to the rotation representation of the used robot. The formats
are grouped by non-Euler rotation formats, Tait-Bryan-Euler rotation formats (all three axes are used)
and proper Euler rotation formats (first and last rotation axis are the same).

Table 7.2: Non-Euler rotation formats
Name Value rot_1 rot_2 rot_3 rot_4 Units Robot Example
QUAT_WXYZ 1 w x y z – ABB
QUAT_XYZW 2 x y z w – Fruitcore HORST
AXIS_ANGLE_RAD 3 rx ry rz – rad Universal Robots

In the following notation primes indicate successive rotations in the intrinsic frame (e.g., Y’ = rotation
about Y-axis after first rotation). _B and _F determine the order in which the rotation components are
given. F stands for forward, meaning that the rotation components are given in the same order as the
rotation is applied, and B stands for backward, meaning the rotation components are given in reverse
order. _RAD and _DEG determine whether the rotation components are given in radians or degrees,

Roboception GmbH
Manual: rc_visard_ng

332 Rev: 26.01.3
Status: Jan 30, 2026

7.3. Generic Robot Interface

respectively, if applicable. So the format EULER_ZYX_B_DEG means that the intrinsic rotation order is z-y’-
x” (first rotate around the z axis, then rotate around the new y axis, then rotate around the new x axis),
the order in which the rotation components are given is backward (so the first rotation element is the
angle around the x axis), and the angels are given in degrees.

Roboception GmbH
Manual: rc_visard_ng

333 Rev: 26.01.3
Status: Jan 30, 2026

7.3. Generic Robot Interface

Table 7.3: Tait-Bryan-Euler rotation formats. Primes indicate suc-
cessive rotations in the intrinsic frame (e.g., Y’ = rotation about Y-
axis after first rotation). _F (Forward): [1st, 2nd, 3rd] | _B (Back-
ward): [3rd, 2nd, 1st], _DEG: degrees | _RAD: radian.

Name Value rot_1 rot_2 rot_3 rot_4 Units Robot Example
EU-
LER_XYZ_F_DEG

4 X Y’ Z” – deg

EU-
LER_XYZ_F_RAD

5 X Y’ Z” – rad

EU-
LER_XYZ_B_DEG

6 Z” Y’ X – deg

EU-
LER_XYZ_B_RAD

7 Z” Y’ X – rad

EU-
LER_XZY_F_DEG

8 X Z’ Y” – deg

EU-
LER_XZY_F_RAD

9 X Z’ Y” – rad

EU-
LER_XZY_B_DEG

10 Y” Z’ X – deg

EU-
LER_XZY_B_RAD

11 Y” Z’ X – rad

EU-
LER_YXZ_F_DEG

12 Y X’ Z” – deg

EU-
LER_YXZ_F_RAD

13 Y X’ Z” – rad

EU-
LER_YXZ_B_DEG

14 Z” X’ Y – deg

EU-
LER_YXZ_B_RAD

15 Z” X’ Y – rad

EU-
LER_YZX_F_DEG

16 Y Z’ X” – deg

EU-
LER_YZX_F_RAD

17 Y Z’ X” – rad

EU-
LER_YZX_B_DEG

18 X” Z’ Y – deg

EU-
LER_YZX_B_RAD

19 X” Z’ Y – rad

EU-
LER_ZXY_F_DEG

20 Z X’ Y” – deg

EU-
LER_ZXY_F_RAD

21 Z X’ Y” – rad

EU-
LER_ZXY_B_DEG

22 Y” X’ Z – deg

EU-
LER_ZXY_B_RAD

23 Y” X’ Z – rad

EU-
LER_ZYX_F_DEG

24 Z Y’ X” – deg KUKA

EU-
LER_ZYX_F_RAD

25 Z Y’ X” – rad

EU-
LER_ZYX_B_DEG

26 X” Y’ Z – deg FANUC, Mitsubishi,
Yaskawa

EU-
LER_ZYX_B_RAD

27 X” Y’ Z – rad

Roboception GmbH
Manual: rc_visard_ng

334 Rev: 26.01.3
Status: Jan 30, 2026

7.3. Generic Robot Interface

Table 7.4: Euler rotation formats. Primes indicate successive ro-
tations in the intrinsic frame (e.g., Y’ = rotation about Y-axis after
first rotation). _F (Forward): [1st, 2nd, 3rd] | _B (Backward):
[3rd, 2nd, 1st], _DEG: degrees | _RAD: radian.

Name Value rot_1 rot_2 rot_3 rot_4 Units Robot Example
EULER_XYX_F_DEG 28 X Y’ X” – deg
EULER_XYX_F_RAD 29 X Y’ X” – rad
EULER_XYX_B_DEG 30 X” Y’ X – deg
EULER_XYX_B_RAD 31 X” Y’ X – rad
EULER_XZX_F_DEG 32 X Z’ X” – deg
EULER_XZX_F_RAD 33 X Z’ X” – rad
EULER_XZX_B_DEG 34 X” Z’ X – deg
EULER_XZX_B_RAD 35 X” Z’ X – rad
EULER_YXY_F_DEG 36 Y X’ Y” – deg
EULER_YXY_F_RAD 37 Y X’ Y” – rad
EULER_YXY_B_DEG 38 Y” X’ Y – deg
EULER_YXY_B_RAD 39 Y” X’ Y – rad
EULER_YZY_F_DEG 40 Y Z’ Y” – deg
EULER_YZY_F_RAD 41 Y Z’ Y” – rad
EULER_YZY_B_DEG 42 Y” Z’ Y – deg
EULER_YZY_B_RAD 43 Y” Z’ Y – rad
EULER_ZXZ_F_DEG 44 Z X’ Z” – deg
EULER_ZXZ_F_RAD 45 Z X’ Z” – rad
EULER_ZXZ_B_DEG 46 Z” X’ Z – deg
EULER_ZXZ_B_RAD 47 Z” X’ Z – rad
EULER_ZYZ_F_DEG 48 Z Y’ Z” – deg Kawasaki
EULER_ZYZ_F_RAD 49 Z Y’ Z” – rad
EULER_ZYZ_B_DEG 50 Z” Y’ Z – deg
EULER_ZYZ_B_RAD 51 Z” Y’ Z – rad

All pose components (position and rotation) are int32 scaled by 1,000,000.

• Float to Int: int = round(float * 1000000)

• Int to Float: float = int / 1000000.0

• Positions in millimeters before scaling

• Angles in degrees/radians (per format) before scaling

• Quaternions unitless, same scaling

• rot_4 unused for Euler/axis-angle (set to 0)

7.3.3.3 Actions

The following actions can be sent.

Roboception GmbH
Manual: rc_visard_ng

335 Rev: 26.01.3
Status: Jan 30, 2026

7.3. Generic Robot Interface

Table 7.5: GRI actions
Name Value Description
STATUS 1 Get system readiness; maps readiness to data_2 (1 or 0)
TRIGGER_JOB_SYNC 2 Execute job synchronously
TRIGGER_JOB_ASYNC 3 Start job asynchronously
GET_JOB_STATUS 4 Query async job status (see Job status)
GET_NEXT_POSE 5 Retrieve next available result
GET_RELATED_POSE 6 Retrieve next related pose
HEC_INIT 7 Initialize hand-eye calibration
HEC_SET_POSE 8 Provide/store calibration pose
HEC_CALIBRATE 9 Run calibration and save results

STATUS (1)

Returns system readiness information fetched from the rc_visard NG in data_2 (1 if ready, 0 if not).

TRIGGER_JOB_SYNC (2)

Runs the job and returns the first result immediately; additional results are stored for later retrieval.
On success with results, error_code will be zero and the pose will be filled. If no results are returned,
error_code will be NO_POSES_FOUND (positive warning). It also reports:

• data_1 = node’s return_code value

• data_2 = number of remaining primary objects (ref. Primary and related objects)

• data_3 = number of remaining related objects (ref. Primary and related objects)

TRIGGER_JOB_ASYNC (3)

Starts the job and returns immediately. The job’s status can be polled with GET_JOB_STATUS (4) (see Job
status) and the results can be fetched with GET_NEXT_POSE (5), as soon as the job is DONE.

GET_JOB_STATUS (4)

Returns the job status. It reports:

• data_1 = node’s return_code value

• data_2 = job status (see table Job status values)

Error details flow through error_code.

GET_NEXT_POSE (5)

Returns the next result of the primary object. It also reports:

• data_1 = node’s return_code value

• data_2 = number of remaining primary objects (ref. Primary and related objects)

• data_3 = number of remaining related objects (ref. Primary and related objects)

When no more primary objects are available, it returns NO_POSES_FOUND and resets the job.

GET_RELATED_POSE (6)

Returns the next pose of the related object corresponding to the current primary object. It also reports:

• data_1 = node’s return_code value

• data_2 = number of remaining primary objects (ref. Primary and related objects)

• data_3 = number of remaining related objects (ref. Primary and related objects)

If no related poses were found, it returns NO_RELATED_POSES.

HEC_INIT (7)

Roboception GmbH
Manual: rc_visard_ng

336 Rev: 26.01.3
Status: Jan 30, 2026

7.3. Generic Robot Interface

This action initializes the hand-eye calibration. It clears any existing calibration data, applies the
pipeline’s configuration parameters and prepares the system for recording new poses. data_1 spec-
ifies the target pipeline.

HEC_SET_POSE (8)

This action is to be used eight times to record distinct robot poses with visible calibration pattern. The
field data_2 is used to specify the image storage slot (0-7). A previous pose in a slot will be overwritten
if a slot is reused. Each pose must provide a different view of the calibration pattern, as described in
Hand-eye calibration. data_1 specifies the target pipeline.

HEC_CALIBRATE (9)

This action processes all recorded poses and calculates the transformation between camera and robot.
It automatically saves successful calibration results. data_1 specifies the target pipeline.

7.3.3.4 Job status

The following job status values can be returned.

Table 7.6: Job status values
Name Value
INACTIVE 1
RUNNING 2
DONE 3
FAILED 4

7.3.3.5 Body definitions

There are different body definitions depending on whether it is a request that is sent or a response that
is received. The request body consists of 54 bytes in total and its definition is given in table Request
body definition.

Table 7.7: Request body definition
Field Type Size Description
header struct 8 Message header (see Message header (8 bytes))
job_id uint16 2 Unique job ID from job configuration
pos_x int32 4 Position X (scaled by 10^6)
pos_y int32 4 Position Y (scaled by 10^6)
pos_z int32 4 Position Z (scaled by 10^6)
rot_1 int32 4 Rotation component 1 (scaled by 10^6)
rot_2 int32 4 Rotation component 2 (scaled by 10^6)
rot_3 int32 4 Rotation component 3 (scaled by 10^6)
rot_4 int32 4 Rotation component 4 (scaled by 10^6)
data_1 int32 4 Additional parameter 1
data_2 int32 4 Additional parameter 2
data_3 int32 4 Additional parameter 3
data_4 int32 4 Additional parameter 4

The job ID is the unique identifier from the job configuration. The usage of the fields data_1...data_4
depends on the action and job. They are set to 0 if unused.

The response body consists of 80 bytes in total. Its definition is given in table Response body definition.

Roboception GmbH
Manual: rc_visard_ng

337 Rev: 26.01.3
Status: Jan 30, 2026

7.3. Generic Robot Interface

Table 7.8: Response body definition
Field Type Size Description
header struct 8 Protocol header
job_id uint16 2 Processed job number
error_code int16 2 GRI result status (severity by sign)
pos_x int32 4 Position X (scaled by 10^6)
pos_y int32 4 Position Y (scaled by 10^6)
pos_z int32 4 Position Z (scaled by 10^6)
rot_1 int32 4 Rotation component 1 (scaled by 10^6)
rot_2 int32 4 Rotation component 2 (scaled by 10^6)
rot_3 int32 4 Rotation component 3 (scaled by 10^6)
rot_4 int32 4 Rotation component 4 (scaled by 10^6)
data_1 int32 4 Node’s return code (0 if none)
data_2 int32 4 Additional result 2
data_3 int32 4 Additional result 3
data_4 int32 4 Additional result 4
data_5 int32 4 Additional result 5
data_6 int32 4 Additional result 6
data_7 int32 4 Additional result 7
data_8 int32 4 Additional result 8
data_9 int32 4 Additional result 9
data_10 int32 4 Additional result 10

Note: For rc_measure, mean_z is mapped to pos_x/pos_y/pos_z.

7.3.3.6 Error codes and semantics

The error_code is int16 and encodes errors/warnings by sign:

• Negative < 0 = error (failure)

• Zero = 0 = success

• Positive > 0 = warning (success with caveat)

The tables below give the different error codes and are split by sign and sorted.

Success

Name Value Description
NO_ERROR 0 Operation successful

Negative error codes

Roboception GmbH
Manual: rc_visard_ng

338 Rev: 26.01.3
Status: Jan 30, 2026

7.3. Generic Robot Interface

Name Value Description
UNKNOWN_ERROR -1 GRI internal, unspecified
INTERNAL_ERROR -2 GRI internal system error
API_NOT_REACHABLE -3 Cannot reach API
API_RESPONSE_ERROR -4 API returned a negative code
PIPELINE_NOT_AVAILABLE -5 Processing pipeline unavailable
INVALID_REQUEST_ERROR -6 Malformed request
INVALID_REQUEST_LENGTH -7 Wrong message length
INVALID_ACTION -8 Unsupported action
PROCESSING_TIMEOUT -9 Operation timed out
UNKNOWN_PROTOCOL_VERSION -10 Protocol version not supported
WRONG_PROTOCOL_FOR_JOB -11 Job does not match protocol version
JOB_DOES_NOT_EXIST -12 Invalid job ID
MISCONFIGURED_JOB -13 Invalid job configuration
HEC_CONFIG_ERROR -14 Invalid configuration parameters
HEC_INIT_ERROR -15 Calibration init failed
HEC_SET_POSE_ERROR -16 Failed to record pose in specified slot
HEC_CALIBRATE_ERROR -17 Unable to compute calibration from recorded poses
HEC_INSUFFICIENT_DETECTION -18 Calibration grid not visible or not detected

Positive codes

Name Value Description
NO_POSES_FOUND 1 No results available
NO_RELATED_POSES 2 No related data found
NO_RETURN_SPECIFIED 3 Job configured with no return type
JOB_STILL_RUNNING 4 Async job not complete

Node return code semantics

The modules/nodes may return a return_code. This node return code is placed in the response data_1
field (defaults to 0 if no code). The GRI’s primary status is in error_code (sign-based semantics).

7.3.4 Integration with a robot

The Generic Robot Interface offers communication on port 7100.

For integrating the GRI communication with a robot, examples for different robot languages are given in
https://github.com/roboception/rc_generic_robot_interface_robot.

Different robot platforms can be supported by implementing a TCP socket client following the GRI binary
protocol (ref. GRI binary protocol specification). This requires a robot controller with TCP/IP support
and the ability to pack robot poses into binary messages and to parse binary messages into robot
poses.

The implementation steps are as follows:

1. Create TCP socket connection

2. Compose request message:

• Set message header (8 bytes)

• Set job ID (2 bytes)

• Pack position (12 bytes, 3x int32)

• Pack rotation (16 bytes, 4x int32)

• Pack additional data (16 bytes, 4x int32)

Roboception GmbH
Manual: rc_visard_ng

339 Rev: 26.01.3
Status: Jan 30, 2026

https://github.com/roboception/rc_generic_robot_interface_robot

7.3. Generic Robot Interface

3. Send request (54 bytes total)

4. Receive response (80 bytes total)

5. Parse response:

• Message header (8 bytes)

• Job ID (2 bytes)

• Error code (2 bytes)

• Position (12 bytes, 3x int32)

• Rotation (16 bytes, 4x int32)

• Additional data (40 bytes, 10x int32)

7.3.4.1 Byte interpretation in socket communication

Some robot scripting languages interpret individual socket bytes as signed values in the range [-128,
127] instead of unsigned [0, 255]. If this is the case, each byte has to be converted to unsigned before
reconstructing int32 values:

Convert signed byte to unsigned
if byte_value < 0:

byte_value = byte_value + 256

After conversion, reconstruct the int32 using little-endian byte order, then apply signed interpretation
to the most significant byte (MSB) to determine if the overall int32 value is negative.

Note: All pose components use scaling as described in Pose formats.

7.3.5 Job and HEC_config API

The job definitions and the definitions of HEC_configs for hand-eye calibration can be set, retrieved and
deleted via the following REST-API endpoints.

GET /generic_robot_interface/hec_configs
Get defined hand-eye calibration configurations

Template request

GET /api/v2/generic_robot_interface/hec_configs HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"0": {

"grid_height": 0.18,
"grid_width": 0.26,
"robot_mounted": true,
"tcp_offset": 0,
"tcp_rotation_axis": -1

}
}

Response Headers

• Content-Type – application/json application/ubjson

Roboception GmbH
Manual: rc_visard_ng

340 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5

7.3. Generic Robot Interface

Status Codes

• 200 OK – successful operation

GET /generic_robot_interface/hec_configs/{pipeline}
Get hand-eye calibration configuration for the selected pipeline

Template request

GET /api/v2/generic_robot_interface/hec_configs/<pipeline> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"grid_height": 0.18,
"grid_width": 0.26,
"robot_mounted": true,
"tcp_offset": 0,
"tcp_rotation_axis": -1

}

Parameters

• pipeline (string) – pipeline of the hand-eye calibration configuration (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

PUT /generic_robot_interface/hec_configs/{pipeline}
Sets a hand-eye calibration configuration for the selected pipeline.

Template request

PUT /api/v2/generic_robot_interface/hec_configs/<pipeline> HTTP/1.1
Accept: application/json application/ubjson

{}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"return_code": {
"message": "HEC configuration saved successfully",
"value": 0

}
}

Parameters

• pipeline (string) – pipeline of the hand-eye calibration configuration (required)

Request JSON Object

• hand-eye calibration configuration (object) – example args (required)

Roboception GmbH
Manual: rc_visard_ng

341 Rev: 26.01.3
Status: Jan 30, 2026

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. Generic Robot Interface

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

DELETE /generic_robot_interface/hec_configs/{pipeline}
Remove a hand-eye calibration configuration.

Template request

DELETE /api/v2/generic_robot_interface/hec_configs/<pipeline> HTTP/1.1
Accept: application/json application/ubjson

Parameters

• pipeline (string) – pipeline of the hand-eye calibration configuration (required)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-
ule.

• 404 Not Found – hec config for the given pipeline not found

GET /generic_robot_interface/jobs
Get defined jobs

Template request

GET /api/v2/generic_robot_interface/jobs HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"0": {

"args": {
"pose_frame": "external",
"tags": []

},
"job_type": "CALL_PIPELINE_SERVICE",
"name": "detect_qr_code",
"node": "rc_qr_code_detect",
"pipeline": "0",
"selected_return": "tags",
"service": "detect"

},
"1": {

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

342 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. Generic Robot Interface

(continued from previous page)

"job_type": "SET_PARAMETERS_SERVICE",
"name": "set_depth_full_quality",
"node": "rc_stereomatching",
"parameters": {
"double_shot": true,
"quality": "Full"

},
"pipeline": "0"

}
}

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

GET /generic_robot_interface/jobs/{job_id}
Get selected job definition

Template request

GET /api/v2/generic_robot_interface/jobs/<job_id> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"args": {

"pose_frame": "camera",
"tags": []

},
"job_type": "CALL_PIPELINE_SERVICE",
"name": "detect_qr_code",
"node": "rc_qr_code_detect",
"pipeline": "0",
"selected_return": "tags",
"service": "detect"

}

Parameters

• job_id (string) – ID of the job (required)

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

PUT /generic_robot_interface/jobs/{job_id}
Sets a job definition for the selected job ID. The required keys depend on the chosen job_type.

Template request

Roboception GmbH
Manual: rc_visard_ng

343 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. Generic Robot Interface

PUT /api/v2/generic_robot_interface/jobs/<job_id> HTTP/1.1
Accept: application/json application/ubjson

{}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"job_id": "1",
"return_code": {
"message": "Job configuration updated successfully",
"value": 0

}
}

Parameters

• job_id (string) – ID of the job (required)

Request JSON Object

• job definition (object) – example args (required)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

DELETE /generic_robot_interface/jobs/{job_id}
Remove a job definition.

Template request

DELETE /api/v2/generic_robot_interface/jobs/<job_id> HTTP/1.1
Accept: application/json application/ubjson

Parameters

• job_id (string) – ID of the job (required)

Request Headers

• Accept – application/json application/ubjson

Response Headers

• Content-Type – application/json application/ubjson

Status Codes

• 200 OK – successful operation

• 403 Forbidden – forbidden, e.g. because there is no valid license for this mod-
ule.

• 404 Not Found – job with given id not found

Roboception GmbH
Manual: rc_visard_ng

344 Rev: 26.01.3
Status: Jan 30, 2026

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.4. OPC UA interface

7.4 OPC UA interface

The rc_visard NG also offers an optional OPC UA interface running on TCP port 4840. The OPC UA
server can be activated via a separate license (Section 9.4).

The OPC UA server provides access to parameters and services of all available software modules
analogous to the REST-API. To browse the OPC UA Address Space use e.g. the freely available
UAExpert GUI client.

The OPC UA server uses the DataTypeDefinition attribute (available in OPC UA version 1.04) for
custom datatypes and also uses methods and variable length arrays. Please check if your OPC UA
client supports this.

Please contact support@roboception.de if you are interested in using the OPC UA server.

7.5 KUKA Ethernet KRL Interface

The rc_visard NG provides an Ethernet KRL Interface (EKI Bridge), which allows communicating with
the rc_visard NG from KUKA KRL via KUKA.EthernetKRL XML.

Note: The component is optional and requires a separate Roboception’s EKIBridge license (Section
9.4) to be purchased.

Note: The KUKA.EthernetKRL add-on software package version 2.2 up to version 5.x must be
activated on the robot controller to use this component.

The EKI Bridge can be used to programmatically to

• do service calls, e.g. to start and stop individual computational nodes, or to use offered services
such as the hand-eye calibration or the computation of grasp poses;

• set and get run-time parameters of computation nodes, e.g. of the camera, or disparity calculation.

Note: A known limitation of the EKI Bridge is that strings representing valid numbers will be converted
to int/float. Hence user-defined names (like ROI IDs, etc.) should always contain at least one letter
so they can be used in service call arguments.

7.5.1 Ethernet connection configuration

The EKI Bridge listens on port 7000 for EKI XML messages and transparently bridges the rc_visard
NG’s REST-API v2 (Section 7.2). The received EKI messages are transformed to JSON and forwarded
to the rc_visard NG’s REST-API. The response from the REST-API is transformed back to EKI XML.

The EKI Bridge gives access to run-time parameters and offered services of all computational nodes
described in Software modules (Section 6).

The Ethernet connection to the rc_visard NG on the robot controller is configured using XML configura-
tion files.

The EKI XML configuration files of all nodes running on the rc_visard NG are available for download at:

https://doc.rc-visard.com/latest/en/eki.html#eki-xml-configuration-files

Each node offering run-time parameters has an XML configuration file for setting and getting its param-
eters. These are named following the scheme <node_name>-parameters.xml. Each node’s service has
its own XML configuration file. These are named following the scheme <node_name>-<service_name>.
xml.

The IP of the rc_visard NG in the network needs to be filled into the XML file.

Roboception GmbH
Manual: rc_visard_ng

345 Rev: 26.01.3
Status: Jan 30, 2026

https://www.unified-automation.com/products/development-tools/uaexpert.html
mailto:support@roboception.de
https://doc.rc-visard.com/latest/en/eki.html#eki-xml-configuration-files

7.5. KUKA Ethernet KRL Interface

These files must be stored in the directory C:\KRC\ROBOTER\Config\User\Common\EthernetKRL of the
robot controller and they are read in when a connection is initialized.

As an example, an Ethernet connection to configure the rc_stereomatching parameters is established
with the following KRL code.

DECL EKI_Status RET
RET = EKI_INIT("rc_stereomatching-parameters")
RET = EKI_Open("rc_stereomatching-parameters")

; ----------- Desired operation -----------

RET = EKI_Close("rc_stereomatching-parameters")

Note: The EKI Bridge automatically terminates the connection to the client if the received XML
telegram is invalid.

7.5.2 Generic XML structure

For data transmission, the EKI Bridge uses <req> as root XML element (short for request).

The root tag always includes the following elements.

• <node>. This includes a child XML element used by the EKI Bridge to identify the target node. The
node name is already included in the XML configuration file.

• <end_of_request>. End of request flag that triggers the request.

The following listing shows the generic XML structure for data transmission.

<SEND>
<XML>

<ELEMENT Tag="req/node/<node_name>" Type="STRING"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>

For data reception, the EKI Bridge uses <res> as root XML element (short for response). The root tag
always includes a <return_code> child element.

<RECEIVE>
<XML>

<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

Note: By default the XML configuration files uses 998 as flag to notify KRL that the response data
record has been received. If this value is already in use, it should be changed in the corresponding
XML configuration file.

7.5.2.1 Return code

The <return_code> element consists of a value and a message attribute.

As for all other components, a successful request returns with a res/return_code/@value of 0. Neg-
ative values indicate that the request failed. The error message is contained in res/return_code/
@message. Positive values indicate that the request succeeded with additional information, contained in
res/return_code/@message as well.

Roboception GmbH
Manual: rc_visard_ng

346 Rev: 26.01.3
Status: Jan 30, 2026

7.5. KUKA Ethernet KRL Interface

The following codes can be issued by the EKI Bridge component.

Table 7.9: Return codes of the EKI Bridge component
Code Description

0 Success
-1 Parsing error in the conversion from XML to JSON
-2 Internal error
-5 Connection error from the REST-API
-9 Missing or invalid license for EKI Bridge component

Note: The EKI Bridge can also return return code values specific to individual nodes. They are
documented in the respective software module (Section 6).

Note: Due to limitations in KRL, the maximum length of a string returned by the EKI Bridge is 512
characters. All messages larger than this value are truncated.

7.5.3 Services

For the nodes’ services, the XML schema is generated from the service’s arguments and response in
JavaScript Object Notation (JSON) described in Software modules (Section 6). The conversion is done
transparently, except for the conversion rules described below.

Conversions of poses:

A pose is a JSON object that includes position and orientation keys.

{
"pose": {
"position": {
"x": "float64",
"y": "float64",
"z": "float64",

},
"orientation": {
"x": "float64",
"y": "float64",
"z": "float64",
"w": "float64",

}
}

}

This JSON object is converted to a KRL FRAME in the XML message.

<pose X="..." Y="..." Z="..." A="..." B="..." C="..."></pose>

Positions are converted from meters to millimeters and orientations are converted from
quaternions to KUKA ABC (in degrees).

Note: No other unit conversions are included in the EKI Bridge. All dimensions and 3D
coordinates that don’t belong to a pose are expected and returned in meters.

Arrays:

Arrays are identified by adding the child element <le> (short for list element) to the list name.
As an example, the JSON object

Roboception GmbH
Manual: rc_visard_ng

347 Rev: 26.01.3
Status: Jan 30, 2026

7.5. KUKA Ethernet KRL Interface

{
"rectangles": [
{
"x": "float64",
"y": "float64"

}
]

}

is converted to the XML fragment

<rectangles>
<le>
<x>...</x>
<y>...</y>

</le>
</rectangles>

Use of XML attributes:

All JSON keys whose values are a primitive data type and don’t belong to an array are stored
in attributes. As an example, the JSON object

{
"item": {
"uuid": "string",
"confidence": "float64",
"rectangle": {
"x": "float64",
"y": "float64"

}
}

}

is converted to the XML fragment

<item uuid="..." confidence="...">
<rectangle x="..." y="...">
</rectangle>

</item>

7.5.3.1 Request XML structure

The <SEND> element in the XML configuration file for a generic service follows the specification below.

<SEND>
<XML>

<ELEMENT Tag="req/node/<node_name>" Type="STRING"/>
<ELEMENT Tag="req/service/<service_name>" Type="STRING"/>
<ELEMENT Tag="req/args/<argX>" Type="<argX_type>"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>

The <service> element includes a child XML element that is used by the EKI Bridge to identify the
target service from the XML telegram. The service name is already included in the configuration file.

The <args> element includes the service arguments and should be configured with EKI_Set<Type> KRL
instructions.

As an example, the <SEND> element of the rc_load_carrier_db’s get_load_carriers service (see
LoadCarrierDB, Section 6.4.1) is:

Roboception GmbH
Manual: rc_visard_ng

348 Rev: 26.01.3
Status: Jan 30, 2026

7.5. KUKA Ethernet KRL Interface

<SEND>
<XML>

<ELEMENT Tag="req/node/rc_load_carrier_db" Type="STRING"/>
<ELEMENT Tag="req/service/get_load_carriers" Type="STRING"/>
<ELEMENT Tag="req/args/load_carrier_ids/le" Type="STRING"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>

The <end_of_request> element allows to have arrays in the request. For configuring an array, the
request is split into as many packages as the size of the array. The last telegram contains all tags,
including the <end_of_request> flag, while all other telegrams contain one array element each.

As an example, for requesting two load carrier models to the rc_load_carrier_db’s get_load_carriers
service, the user needs to send two XML messages. The first XML telegram is:

<req>
<args>

<load_carrier_ids>
<le>load_carrier1</le>

</load_carrier_ids>
</args>

</req>

This telegram can be sent from KRL with the EKI_Send command, by specifying the list element as path:

DECL EKI_STATUS RET
RET = EKI_SetString("rc_load_carrier_db-get_load_carriers", "req/args/load_carrier_ids/
→˓le", "load_carrier1")
RET = EKI_Send("rc_load_carrier_db-get_load_carriers", "req/args/load_carrier_ids/le")

The second telegram includes all tags and triggers the request to the rc_load_carrier_db node:

<req>
<node>

<rc_load_carrier_db></rc_load_carrier_db>
</node>
<service>

<get_load_carriers></get_load_carriers>
</service>
<args>

<load_carrier_ids>
<le>load_carrier2</le>

</load_carrier_ids>
</args>
<end_of_request></end_of_request>

</req>

This telegram can be sent from KRL by specifying req as path for EKI_Send:

DECL EKI_STATUS RET
RET = EKI_SetString("rc_load_carrier_db-get_load_carriers", "req/args/load_carrier_ids/
→˓le", "load_carrier2")
RET = EKI_Send("rc_load_carrier_db-get_load_carriers", "req")

7.5.3.2 Response XML structure

The <RECEIVE> element in the XML configuration file for a generic service follows the specification below:

Roboception GmbH
Manual: rc_visard_ng

349 Rev: 26.01.3
Status: Jan 30, 2026

7.5. KUKA Ethernet KRL Interface

<RECEIVE>
<XML>

<ELEMENT Tag="res/<resX>" Type="<resX_type>"/>
<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

As an example, the <RECEIVE> element of the rc_april_tag_detect’s detect service (see TagDetect ,
Section 6.2.3) is:

<RECEIVE>
<XML>

<ELEMENT Tag="res/timestamp/@sec" Type="INT"/>
<ELEMENT Tag="res/timestamp/@nsec" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/tags/le/pose_frame" Type="STRING"/>
<ELEMENT Tag="res/tags/le/timestamp/@sec" Type="INT"/>
<ELEMENT Tag="res/tags/le/timestamp/@nsec" Type="INT"/>
<ELEMENT Tag="res/tags/le/pose/@X" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@Y" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@Z" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@A" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@B" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@C" Type="REAL"/>
<ELEMENT Tag="res/tags/le/instance_id" Type="STRING"/>
<ELEMENT Tag="res/tags/le/id" Type="STRING"/>
<ELEMENT Tag="res/tags/le/size" Type="REAL"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

For arrays, the response includes multiple instances of the same XML element. Each element is written
into a separate buffer within EKI and can be read from the buffer with KRL instructions. The number
of instances can be requested with EKI_CheckBuffer and each instance can then be read by calling
EKI_Get<Type>.

As an example, the tag poses received after a call to the rc_april_tag_detect’s detect service can be
read in KRL using the following code:

DECL EKI_STATUS RET
DECL INT i
DECL INT num_instances
DECL FRAME poses[32]

DECL FRAME pose = {X 0.0, Y 0.0, Z 0.0, A 0.0, B 0.0, C 0.0}

RET = EKI_CheckBuffer("rc_april_tag_detect-detect", "res/tags/le/pose")
num_instances = RET.Buff
for i=1 to num_instances

RET = EKI_GetFrame("rc_april_tag_detect-detect", "res/tags/le/pose", pose)
poses[i] = pose

endfor
RET = EKI_ClearBuffer("rc_april_tag_detect-detect", "res")

Note: Before each request from EKI to the rc_visard NG, all buffers should be cleared in order to
store only the current response in the EKI buffers.

Roboception GmbH
Manual: rc_visard_ng

350 Rev: 26.01.3
Status: Jan 30, 2026

7.5. KUKA Ethernet KRL Interface

7.5.4 Parameters

All nodes’ parameters can be set and queried from the EKI Bridge. The XML configuration file for a
generic node follows the specification below:

<SEND>
<XML>

<ELEMENT Tag="req/node/<node_name>" Type="STRING"/>
<ELEMENT Tag="req/parameters/<parameter_x>/@value" Type="INT"/>
<ELEMENT Tag="req/parameters/<parameter_y>/@value" Type="STRING"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>
<RECEIVE>

<XML>
<ELEMENT Tag="res/parameters/<parameter_x>/@value" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_x>/@default" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_x>/@min" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_x>/@max" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@value" Type="REAL"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@default" Type="REAL"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@min" Type="REAL"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@max" Type="REAL"/>
<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

The request is interpreted as a get request if all parameter’s value attributes are empty. If any value
attribute is non-empty, it is interpreted as set request of the non-empty parameters.

As an example, the current value of all parameters of rc_stereomatching can be queried using the XML
telegram:

<req>
<node>

<rc_stereomatching></rc_stereomatching>
</node>
<parameters></parameters>
<end_of_request></end_of_request>

</req>

This XML telegram can be sent out with Ethernet KRL using:

DECL EKI_STATUS RET
RET = EKI_Send("rc_stereomatching-parameters", "req")

The response from the EKI Bridge contains all parameters:

<res>
<parameters>

<acquisition_mode default="Continuous" max="" min="" value="Continuous"/>
<quality default="High" max="" min="" value="High"/>
<static_scene default="0" max="1" min="0" value="0"/>
<seg default="200" max="4000" min="0" value="200"/>
<smooth default="1" max="1" min="0" value="1"/>
<fill default="3" max="4" min="0" value="3"/>
<minconf default="0.5" max="1.0" min="0.5" value="0.5"/>
<mindepth default="0.1" max="100.0" min="0.1" value="0.1"/>
<maxdepth default="100.0" max="100.0" min="0.1" value="100.0"/>
<maxdeptherr default="100.0" max="100.0" min="0.01" value="100.0"/>

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

351 Rev: 26.01.3
Status: Jan 30, 2026

7.6. GigE Vision 2.0/GenICam image interface

(continued from previous page)

</parameters>
<return_code message="" value="0"/>

</res>

The quality parameter of rc_stereomatching can be set to Low by the XML telegram:

<req>
<node>

<rc_stereomatching></rc_stereomatching>
</node>
<parameters>

<quality value="Low"></quality>
</parameters>
<end_of_request></end_of_request>

</req>

This XML telegram can be sent out with Ethernet KRL using:

DECL EKI_STATUS RET
RET = EKI_SetString("rc_stereomatching-parameters", "req/parameters/quality/@value",
→˓"Low")
RET = EKI_Send("rc_stereomatching-parameters", "req")

In this case, only the applied value of quality is returned by the EKI Bridge:

<res>
<parameters>

<quality default="High" max="" min="" value="Low"/>
</parameters>
<return_code message="" value="0"/>

</res>

7.5.5 Example applications

More detailed robot application examples can be found at https://github.com/roboception/eki_examples.

7.5.6 Troubleshooting

SmartPad error message: Limit of element memory reached

This error may occur if the number of matches exceeds the memory limit.

• Increase BUFFERING and set BUFFSIZE in EKI config files. Adapt these settings to your partic-
ular KRC.

• Decrease the ‘Maximum Matches’ parameter in the detection module

• Even if the total memory limit (BUFFSIZE) of a message is not reached, the KRC might not be
able to parse the number of child elements in the XML tree if the BUFFERING limit is too small.
For example, if your application proposes 50 different grasps, the BUFFERING limit needs to be
50 too.

7.6 GigE Vision 2.0/GenICam image interface

Gigabit Ethernet for Machine Vision (“GigE Vision®” for short) is an industrial camera interface standard
based on UDP/IP (see http://www.gigevision.com). The rc_visard NG is a GigE Vision® version 2.0
device and is hence compatible with all GigE Vision® 2.0 compliant frameworks and libraries.

Roboception GmbH
Manual: rc_visard_ng

352 Rev: 26.01.3
Status: Jan 30, 2026

https://github.com/roboception/eki_examples
http://www.gigevision.com

7.6. GigE Vision 2.0/GenICam image interface

GigE Vision® uses GenICam to describe the camera/device features. For more information about this
Generic Interface for Cameras see http://www.genicam.org/.

Via this interface the rc_visard NG provides features such as

• discovery,

• IP configuration,

• configuration of camera related parameters,

• image grabbing, and

• time synchronization via IEEE 1588-2008 PrecisionTimeProtocol (PTPv2).

Note: The rc_visard NG supports jumbo frames of up to 9000 bytes. Setting an MTU of 9000 on
your GigE Vision client side is recommended for best performance.

Note: Roboception provides tools and a C++ API with examples for discovery, configuration, and im-
age streaming via the GigE Vision/GenICam interface. See http://www.roboception.com/download.

7.6.1 GigE Vision ports

GigE Vision is a UDP based protocol. On the rc_visard NG the UDP ports are fixed and known:

• UDP port 3956: GigE Vision Control Protocol (GVCP). Used for discovery, control and configura-
tion.

• UDP port 50010: Stream channel source port for GigE Vision Stream Protocol (GVSP) used for
image streaming.

7.6.2 Important GenICam parameters

The following list gives an overview of the relevant GenICam features of the rc_visard NG that
can be read and/or changed via the GenICam interface. In addition to the standard parameters,
which are defined in the Standard Feature Naming Convention (SFNC, see http://www.emva.org/
standards-technology/genicam/genicam-downloads/), rc_visard NG devices also offer custom param-
eters that account for special features of the Camera module (Section 6.1) and the sect-stereo-
matching (Section ??) module.

7.6.3 Important standard GenICam features

7.6.3.1 Category: ImageFormatControl

ComponentSelector

• type: Enumeration, one of Intensity, IntensityCombined, Disparity, Confidence, or Error

• default: -

• description: Allows the user to select one of the five image streams for configuration (see
Provided image streams, Section 7.6.6).

ComponentIDValue (read-only)

• type: Integer

• description: The ID of the image stream selected by the ComponentSelector.

ComponentEnable

• type: Boolean

Roboception GmbH
Manual: rc_visard_ng

353 Rev: 26.01.3
Status: Jan 30, 2026

http://www.genicam.org/
http://www.roboception.com/download
http://www.emva.org/standards-technology/genicam/genicam-downloads/
http://www.emva.org/standards-technology/genicam/genicam-downloads/

7.6. GigE Vision 2.0/GenICam image interface

• default: -

• description: If set to true, it enables the image stream selected by ComponentSelector;
otherwise, it disables the stream. Using ComponentSelector and ComponentEnable, individual
image streams can be switched on and off.

Width (read-only)

• type: Integer

• description: Image width in pixel of image stream that is currently selected by
ComponentSelector.

Height (read-only)

• type: Integer

• description: Image height in pixel of image stream that is currently selected by
ComponentSelector.

WidthMax (read-only)

• type: Integer

• description: Maximum width of an image.

HeightMax (read-only)

• type: Integer

• description: Maximum height of an image in the streams. This is always 1920 pixels due
to the stacked left and right images in the IntensityCombined stream (see Provided image
streams, Section 7.6.6).

PixelFormat

• type: Enumeration, one of Mono8, YCbCr411_8 (color cameras only), Coord3D_C16,
Confidence8 and Error8

• description: Pixel format of the selected component. The enumeration only permits to choose
the format among the possibly formats for the selected component. For a color camera, Mono8
or YCbCr411_8 can be chosen for the Intensity and IntensityCombined component.

7.6.3.2 Category: AcquisitionControl

AcquisitionFrameRate

• type: Float, ranges from 1 Hz to 25 Hz

• default: 25 Hz

• description: Frame rate of the camera

ExposureAuto

• type: Enumeration, one of Continuous, Out1High, AdaptiveOut1, HDR or Off

• default: Continuous

• description: Combines exp_control and exp_auto_mode. Off maps to Manual exposure
control. Continuous, Out1High or AdaptiveOut1 enable Auto exposure control with the re-
spective auto exposure mode where Continuous maps to the Normal exp_auto_mode. HDR
enables high-dynamic-range exposure control.

ExposureTime

• type: Float, ranges from 66 µs to 18000 µs

• default: 5000 µs

• description: The cameras’ exposure time in microseconds for the manual exposure mode.

Roboception GmbH
Manual: rc_visard_ng

354 Rev: 26.01.3
Status: Jan 30, 2026

7.6. GigE Vision 2.0/GenICam image interface

7.6.3.3 Category: AnalogControl

GainSelector (read-only)

• type: Enumeration, is always All

• default: All

• description: The rc_visard NG currently supports only one overall gain setting.

Gain

• type: Float, ranges from 0 dB to 18 dB

• default: 0 dB

• description: The cameras’ gain value in decibel that is used in manual exposure mode.

BalanceWhiteAuto (color cameras only)

• type: Enumeration, one of Continuous or Off

• default: Continuous

• description: Can be set to Off for manual white balancing mode or to Continuous for auto
white balancing. This feature is only available on color cameras.

BalanceRatioSelector (color cameras only)

• type: Enumeration, one of Red or Blue

• default: Red

• description: Selects ratio to be modified by BalanceRatio. Red means red to green ratio and
Blue means blue to green ratio. This feature is only available on color cameras.

BalanceRatio (color cameras only)

• type: Float, ranges from 0.125 to 8

• default: 1.2 if Red and 2.4 if Blue is selected in BalanceRatioSelector

• description: Weighting of red or blue to green color channel. This feature is only available on
color cameras.

7.6.3.4 Category: DigitalIOControl

LineSelector

• type: Enumeration, one of Out1, Out2, In1 or In2

• default: Out1

• description: Selects the input or output line for getting the current status or setting the source.

LineStatus (read-only)

• type: Boolean

• description: Current status of the line selected by LineSelector.

LineStatusAll (read-only)

• type: Integer

• description: Current status of GPIO inputs and outputs represented in the lowest four bits.

Table 7.10: Meaning of bits of LineStatusAll field.
Bit 4 3 2 1
GPIO In 2 In 1 Out 2 Out 1

Roboception GmbH
Manual: rc_visard_ng

355 Rev: 26.01.3
Status: Jan 30, 2026

7.6. GigE Vision 2.0/GenICam image interface

LineSource

• type: Enumeration, one of ExposureActive, ExposureAlternateActive, Low or High

• default: Low

• description: Mode for output line selected by LineSelector as described in the IO-
Control module (out1_mode and out2_mode, Section 6.3.4.1). See also parameter
AcquisitionAlternateFilter for filtering images in ExposureAlternateActive mode.

7.6.3.5 Category: TransportLayerControl / PtpControl

PtpEnable

• type: Boolean

• default: false

• description: Switches PTP synchronization on and off.

7.6.3.6 Category: Scan3dControl

Scan3dDistanceUnit (read-only)

• type: Enumeration, is always Pixel

• description: Unit for the disparity measurements, which is always Pixel.

Scan3dOutputMode (read-only)

• type: Enumeration, is always DisparityC

• description: Mode for the depth measurements, which is always DisparityC.

Scan3dFocalLength (read-only)

• type: Float

• description: Focal length in pixel of image stream selected by ComponentSelector. In case of
the component Disparity, Confidence and Error, the value also depends on the resolution
that is implicitly selected by DepthQuality.

Scan3dBaseline (read-only)

• type: Float

• description: Baseline of the stereo camera in meters.

Scan3dPrinciplePointU (read-only)

• type: Float

• description: Horizontal location of the principal point in pixel of image stream selected by
ComponentSelector. In case of the component Disparity, Confidence and Error, the value
also depends on the resolution that is implicitly selected by DepthQuality.

Scan3dPrinciplePointV (read-only)

• type: Float

• description: Vertical location of the principal point in pixel of image stream selected by
ComponentSelector. In case of the component Disparity, Confidence and Error, the value
also depends on the resolution that is implicitly selected by DepthQuality.

Scan3dCoordinateScale (read-only)

• type: Float

• description: The scale factor that has to be multiplied with the disparity values in the disparity
image stream to get the actual disparity measurements. This value is always 0.0625.

Roboception GmbH
Manual: rc_visard_ng

356 Rev: 26.01.3
Status: Jan 30, 2026

7.6. GigE Vision 2.0/GenICam image interface

Scan3dCoordinateOffset (read-only)

• type: Float

• description: The offset that has to be added to the disparity values in the disparity image
stream to get the actual disparity measurements. For the rc_visard NG, this value is always
0 and can therefore be disregarded.

Scan3dInvalidDataFlag (read-only)

• type: Boolean

• description: Is always true, which means that invalid data in the disparity image is marked
by a specific value defined by the Scan3dInvalidDataValue parameter.

Scan3dInvalidDataValue (read-only)

• type: Float

• description: Is the value which stands for invalid disparity. This value is always 0, which
means that disparity values of 0 correspond to invalid measurements. To distinguish be-
tween invalid disparity measurements and disparity measurements of 0 for objects which are
infinitely far away, the rc_visard NG sets the disparity value for the latter to the smallest pos-
sible disparity value of 0.0625. This still corresponds to an object distance of several hundred
meters.

7.6.3.7 Category: ChunkDataControl

ChunkModeActive

• type: Boolean

• default: False

• description: Enables chunk data that is delivered with every image.

7.6.4 Custom GenICam features of the rc_visard NG

7.6.4.1 Category: DeviceControl

RcSystemReady (read-only)

• type: Boolean

• description: Returns whether the device’s boot process has completed and all modules are
running.

RcParamLockDisable

• type: Boolean

• default: False

• description: If set to true, the camera and depth image parameters are not locked when a
GigE Vision client is connected to the device. Please note that depending on the connected
GigE Vision client, parameter changes by other applications (e.g. the Web GUI) might not be
noticed by the GigE Vision client, which could lead to unwanted results.

7.6.4.2 Category: AcquisitionControl

AcquisitionAlternateFilter

• type: Enumeration, one of Off, OnlyHigh or OnlyLow

• default: Off

Roboception GmbH
Manual: rc_visard_ng

357 Rev: 26.01.3
Status: Jan 30, 2026

7.6. GigE Vision 2.0/GenICam image interface

• description: If this parameter is set to OnlyHigh (or OnlyLow) and the LineSource is set to
ExposureAlternateActive for any output, then only camera images are delivered that are
captured while the output is high, i.e. a potentially connected projector is on (or low, i.e.
a potentially connected projector is off). This parameter is a simple means for only getting
images without projected pattern. The minimal time difference between camera and disparity
images will be about 40 ms in this case (see IOControl , Section 6.3.4.1).

AcquisitionMultiPartMode

• type: Enumeration, one of SingleComponent or SynchronizedComponents

• default: SingleComponent

• description: Only effective in MultiPart mode. If this parameter is set to SingleComponent
the images are sent immediately as a single component per frame/buffer when they become
available. This is the same behavior as when MultiPart is not supported by the client. If set
to SynchronizedComponents all enabled components are time synchronized on the rc_visard
NG and only sent (in one frame/buffer) when they are all available for that timestamp.

ExposureTimeAutoMax

• type: Float, ranges from 66 µs to 18000 µs

• default: 18000 µs

• description: Maximal exposure time in auto exposure mode.

ExposureRegionOffsetX

• type: Integer in the range of 0 to the maximum image width

• default: 0

• description: Horizontal offset of exposure region in pixel.

ExposureRegionOffsetY

• type: Integer in the range of 0 to the maximum image height

• default: 0

• description: Vertical offset of exposure region in pixel.

ExposureRegionWidth

• type: Integer in the range of 0 to the maximum image width

• default: 0

• description: Width of exposure region in pixel.

ExposureRegionHeight

• type: Integer in the range of 0 to the maximum image height

• default: 0

• description: Height of exposure region in pixel.

RcExposureAutoAverageMax

• type: Float in the range of 0 to 1

• default: 0.75

• description: Maximum brightness for the auto exposure function as value between 0 (dark)
and 1 (bright).

RcExposureAutoAverageMin

• type: Float in the range of 0 to 1

• default: 0.25

Roboception GmbH
Manual: rc_visard_ng

358 Rev: 26.01.3
Status: Jan 30, 2026

7.6. GigE Vision 2.0/GenICam image interface

• description: Minimum brightness for the auto exposure function as value between 0 (dark)
and 1 (bright).

7.6.4.3 Category: Scan3dControl

FocalLengthFactor (read-only)

• type: Float

• description: The focal length scaled to an image width of 1 pixel. To get the focal length in
pixels for a certain image, this value must be multiplied by the width of the received image.
See also parameter Scan3dFocalLength.

Baseline (read-only)

• type: Float

• description: This parameter is deprecated. The parameter Scan3dBaseline should be used
instead.

7.6.4.4 Category: DepthControl

DepthAcquisitionMode

• type: Enumeration, one of SingleFrame, SingleFrameOut1 or Continuous

• default: Continuous

• description: In single frame mode, stereo matching is performed upon each call of
DepthAcquisitionTrigger. The SingleFrameOut1 mode can be used to control an exter-
nal projector. It sets the line source of Out1 to ExposureAlternateActive upon each trigger
and resets it to Low as soon as the images for stereo matching are grabbed. In continuous
mode, stereo matching is performed continuously.

DepthAcquisitionTrigger

• type: Command

• description: This command triggers stereo matching of the next available stereo image pair,
if DepthAcquisitionMode is set to SingleFrame or SingleFrameOut1.

DepthQuality

• type: Enumeration, one of Low, Medium, High, or Full (only with StereoPlus license)

• default: High

• description: Quality of disparity images. Lower quality results in disparity images with lower
resolution (Quality, Section ??).

DepthDoubleShot

• type: Boolean

• default: False

• description: True for improving the stereo matching result of a scene recorded with a pro-
jector by filling holes with depth information computed from images without projector pattern.
(Double-Shot, Section ??).

DepthStaticScene

• type: Boolean

• default: False

• description: True for averaging 8 consecutive camera images for improving the stereo match-
ing result. (Static, Section ??).

Roboception GmbH
Manual: rc_visard_ng

359 Rev: 26.01.3
Status: Jan 30, 2026

7.6. GigE Vision 2.0/GenICam image interface

DepthSmooth (read-only if StereoPlus license is not available)

• type: Boolean

• default: False

• description: True for advanced smoothing of disparity values. (Smoothing, Section ??).

DepthFill

• type: Integer, ranges from 0 pixel to 4 pixels

• default: 3 pixels

• description: Value in pixels for Fill-In (Section ??).

DepthSeg

• type: Integer, ranges from 0 pixel to 4000 pixels

• default: 200 pixels

• description: Value in pixels for Segmentation (Section ??).

DepthMinConf

• type: Float, ranges from 0.0 to 1.0

• default: 0.0

• description: Value for Minimum Confidence filtering (Section ??).

DepthMinDepth

• type: Float, ranges from 0.1 m to 100.0 m

• default: 0.1 m

• description: Value in meters for Minimum Distance filtering (Section ??).

DepthMaxDepth

• type: Float, ranges from 0.1m to 100.0 m

• default: 100.0 m

• description: Value in meters for Maximum Distance filtering (Section ??).

DepthMaxDepthErr

• type: Float, ranges from 0.01 m to 100.0 m

• default: 100.0 m

• description: Value in meters for Maximum Depth Error filtering (Section ??).

7.6.5 Chunk data

The rc_visard NG supports chunk parameters that are transmitted with every image. Chunk parameters
all have the prefix Chunk. Their meaning equals their non-chunk counterparts, except that they belong to
the corresponding image, e.g. Scan3dFocalLength depends on ComponentSelector and DepthQuality
as both can change the image resolution. The parameter ChunkScan3dFocalLength that is delivered
with an image fits to the resolution of the corresponding image.

Particularly useful chunk parameters are:

• ChunkComponentSelector selects for which component to extract the chunk data in MultiPart
mode.

• ChunkComponentID and ChunkComponentIDValue provide the relation of the image to its component
(e.g. camera image or disparity image) without guessing from the image format or size.

Roboception GmbH
Manual: rc_visard_ng

360 Rev: 26.01.3
Status: Jan 30, 2026

7.6. GigE Vision 2.0/GenICam image interface

• ChunkLineStatusAll provides the status of all GPIOs at the time of image acquisition. See
LineStatusAll above for a description of bits.

• ChunkScan3d... parameters are useful for 3D reconstruction as described in Section Image
stream conversions (Section 7.6.7).

• ChunkPartIndex provides the index of the image part in this MultiPart block for the selected com-
ponent (ChunkComponentSelector).

• ChunkRcOut1Reduction gives a ratio of how much the brightness of the images with GPIO Out1
LOW is lower than the brightness of the images with GPIO Out1 HIGH. For example, a value of
0.2 means that the images with GPIO Out1 LOW have 20% less brightness than the images with
GPIO Out1 HIGH. This value is only available if exp_auto_mode of the stereo camera is set to
AdaptiveOut1 or Out1High.

Chunk data is enabled by setting the GenICam parameter ChunkModeActive to True.

7.6.6 Provided image streams

The rc_visard NG provides the following five different image streams via the GenICam interface:

Component name PixelFormat Description
Intensity

Mono8 (monochrome
cameras)
YCbCr411_8 (color
cameras)

Left rectified cam-
era image

IntensityCombined

Mono8 (monochrome
cameras)
YCbCr411_8 (color
cameras)

Left rectified cam-
era image stacked
on right rectified
camera image

Disparity Coord3D_C16 Disparity image in
desired resolution,
i.e., DepthQuality
of Full, High,
Medium or Low

Confidence Confidence8 Confidence image
Error Error8 (custom:

0x81080001)
Disparity error im-
age

Each image comes with a buffer timestamp and the PixelFormat given in the above table. This PixelFor-
mat should be used to distinguish between the different image types. Images belonging to the same
acquisition timestamp can be found by comparing the GenICam buffer timestamps.

7.6.7 Image stream conversions

The disparity image contains 16 bit unsigned integer values. These values must be multiplied by the
scale value given in the GenICam feature Scan3dCoordinateScale to get the disparity values 𝑑 in pix-
els. To compute the 3D object coordinates from the disparity values, the focal length and the base-
line as well as the principal point are required. These parameters are transmitted as GenICam fea-
tures Scan3dFocalLength, Scan3dBaseline, Scan3dPrincipalPointU and Scan3dPrincipalPointV. The
focal length and principal point depend on the image resolution of the selected component. Knowing
these values, the pixel coordinates and the disparities can be transformed into 3D object coordinates

Roboception GmbH
Manual: rc_visard_ng

361 Rev: 26.01.3
Status: Jan 30, 2026

7.7. gRPC image stream interface

in the camera coordinate frame using the equations described in Computing depth images and point
clouds (Section 5.2.2).

Note: The rc_visard NG’s camera coordinate frame is defined as shown in sensor coordinate
frame (Section 3.7).

Assuming that 𝑑16𝑖𝑘 is the 16 bit disparity value at column 𝑖 and row 𝑘 of a disparity image, the float
disparity in pixels 𝑑𝑖𝑘 is given by

𝑑𝑖𝑘 = 𝑑16𝑖𝑘 · Scan3dCoordinateScale

The 3D reconstruction in meters can be written with the GenICam parameters as:

𝑃𝑥 = (𝑖+ 0.5− Scan3dPrincipalPointU)
Scan3dBaseline

𝑑𝑖𝑘
,

𝑃𝑦 = (𝑘 + 0.5− Scan3dPrincipalPointV)
Scan3dBaseline

𝑑𝑖𝑘
,

𝑃𝑧 = Scan3dFocalLength
Scan3dBaseline

𝑑𝑖𝑘
.

The confidence image contains 8 bit unsigned integer values. These values have to be divided by 255
to get the confidence as value between 0 an 1.

The error image contains 8 bit unsigned integer values. The error 𝑒𝑖𝑘 must be multiplied by the scale
value given in the GenICam feature Scan3dCoordinateScale to get the disparity-error values 𝑑𝑒𝑝𝑠 in
pixels. According to the description in Confidence and error images (Section 5.2.3), the depth error 𝑧𝑒𝑝𝑠
in meters can be computed with GenICam parameters as

𝑑𝑖𝑘 = 𝑑16𝑖𝑘 · Scan3dCoordinateScale,

𝑧𝑒𝑝𝑠 =
𝑒𝑖𝑘 · Scan3dCoordinateScale · Scan3dFocalLength · Scan3dBaseline

(𝑑𝑖𝑘)2
.

Note: It is preferable to enable chunk data with the parameter ChunkModeActive
and to use the chunk parameters ChunkScan3dCoordinateScale, ChunkScan3dFocalLength,
ChunkScan3dBaseline, ChunkScan3dPrincipalPointU and ChunkScan3dPrincipalPointV that are
delivered with every image, because their values already fit to the image resolution of the corre-
sponding image.

For more information about disparity, error, and confidence images, please refer to sect-stereo-
matching (Section ??).

7.7 gRPC image stream interface

The gRPC image streaming interface can be used as an alternative to the GigE Vision / GenICam
interface (Section 7.6) for getting camera images and synchronized sets of images (e.g. left camera
image and corresponding disparity image).

gRPC is a remote procedure call system that also supports streaming. It uses Protocol Buffers (see
https://developers.google.com/protocol-buffers/) as interface description language and data serializa-
tion. For a gRPC introduction and more details please see the official website (https://grpc.io/).

The advantages of the gRPC interface in comparison to GigE Vision are:

• It is simpler to use in own programs than GigE Vision.

• There is gRPC support for a lot of programming languages (see https://grpc.io/).

• The communication is based on TCP instead of UDP and therefore it also works over less stable
networks, e.g. WLAN.

Roboception GmbH
Manual: rc_visard_ng

362 Rev: 26.01.3
Status: Jan 30, 2026

https://grpc.io/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://grpc.io/
https://grpc.io/

7.7. gRPC image stream interface

The disadvantages of the gRPC interface in comparison to GigE Vision are:

• It does not support changing parameters, but the REST-API interface (Section 7.2) can be used
for changing parameters.

• It is not a standard vision interface like GigE Vision.

The rc_visard NG provides synchronized image sets via gRPC server side streams on port 50051.

The communication is started by sending an ImageSetRequest message to the server. The message
contains the information about requested images, i.e. left, right, disparity, confidence and disparity_error
images can be enabled separately.

After getting the request, the server starts continuously sending ImageSet messages that contain all
requested images with all parameters necessary for interpreting the images. The images that are
contained in an ImageSet message are synchronized, i.e. they are all captured at the same time. The
only exception to this rule is if the out1_mode (Section 6.3.4.1) is set to AlternateExposureActive. In
this case, the camera and disparity images are taken 40 ms apart, so that the GPIO Out1 is LOW when
the left and right images are taken, and HIGH for the disparity, confidence and error images. This mode
is useful when a random dot projector is used, because the projector would be off for capturing the
left and right image, and on for the disparity image, which results in undisturbed camera images and a
much denser and more accurate disparity image.

Streaming of images is done until the client closes the connection.

An ImageEventsRequest message can be sent to start streaming ImageEvents. This message contains
the depth_acquisition_done Event, which signals that the image acquisition for depth computation
has finished. It also contains the imageset_timestamp of the corresponding ImageSet. This event cen
be used to optimize cycle time in a robotic application, because it signals when it is safe to move the
camera or the scene after triggering a detection.

7.7.1 gRPC service definition

syntax = "proto3";

message Time
{

int32 sec = 1; ///< Seconds
int32 nsec = 2; ///< Nanoseconds

}

message Gpios
{

uint32 inputs = 1; ///< bitmask of available inputs
uint32 outputs = 2; ///< bitmask of available outputs
uint32 values = 3; ///< bitmask of GPIO values

}

message Image
{

Time timestamp = 1; ///< Acquisition timestamp of the image
uint32 height = 2; ///< image height (number of rows)
uint32 width = 3; ///< image width (number of columns)
float focal_length = 4; ///< focal length in pixels
float principal_point_u = 5; ///< horizontal position of the principal point
float principal_point_v = 6; ///< vertical position of the principal point
string encoding = 7; ///< Encoding of pixels ["mono8", "mono16", "rgb8"]
bool is_bigendian = 8; ///< is data bigendian, (in our case false)
uint32 step = 9; ///< full row length in bytes
bytes data = 10; ///< actual matrix data, size is (step * height)
Gpios gpios = 11; ///< GPIOs as of acquisition timestamp
float exposure_time = 12; ///< exposure time in seconds

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

363 Rev: 26.01.3
Status: Jan 30, 2026

7.7. gRPC image stream interface

(continued from previous page)

float gain = 13; ///< gain factor in decibel
float noise = 14; ///< noise
float out1_reduction = 16; ///< Fraction of reduction (0.0 - 1.0) of exposure time for

→˓images with GPIO Out1=Low in exp_auto_mode=AdaptiveOut1
float brightness = 17; ///< Current brightness of the image as value between 0 and 1

}

message DisparityImage
{

Time timestamp = 1; ///< Acquisition timestamp of the image
float scale = 2; ///< scale factor
float offset = 3; ///< offset in pixels (in our case 0)
float invalid_data_value = 4; ///< value used to mark pixels as invalid (in our case 0)
float baseline = 5; ///< baseline in meters
float delta_d = 6; ///< Smallest allowed disparity increment. The smallest

→˓achievable depth range resolution is delta_Z = (Z^2/image.focal_length*baseline)*delta_d.
Image image = 7; ///< disparity image

}

message Mesh
{

Time timestamp = 1; ///< Acquisition timestamp of disparity image from which the mesh
→˓is computed
string format = 2; ///< currently only "ply" is supported
bytes data = 3; ///< actual mesh data

}

message ImageSet
{

Time timestamp = 1;
Image left = 2;
Image right = 3;
DisparityImage disparity = 4;
Image disparity_error = 5;
Image confidence = 6;
Mesh mesh = 7;

}

message MeshOptions
{

uint32 max_points = 1; ///< limit maximum number of points, zero means default (up
→˓to 3.1MP), minimum is 1000
enum BinningMethod {

AVERAGE = 0; ///< average over all points in bin
MIN_DEPTH = 1; ///< use point with minimum depth (i.e. closest to camera) in

→˓bin
}
BinningMethod binning_method = 2; ///< method used for binning if limited by max_points
bool watertight = 3; ///< connect all edges and fill all holes, e.g. for collision

→˓checking
bool textured = 4; ///< add texture information to mesh

}

message ImageSetRequest
{

bool left_enabled = 1;
bool right_enabled = 2;
bool disparity_enabled = 3;
bool disparity_error_enabled = 4;
bool confidence_enabled = 5;
bool mesh_enabled = 6;

(continues on next page)

Roboception GmbH
Manual: rc_visard_ng

364 Rev: 26.01.3
Status: Jan 30, 2026

7.7. gRPC image stream interface

(continued from previous page)

MeshOptions mesh_options = 7;
bool color = 8; ///< send left/right image as color (rgb8) images

}

service ImageInterface
{

// A server-to-client streaming RPC.
rpc StreamImageSets(ImageSetRequest) returns (stream ImageSet) {}

}

message Event
{

Time timestamp = 1; ///< timestamp of the event
string message = 2; ///< optional message of the event

}

message ImageEvents
{

Time imageset_timestamp = 1; ///< timestamp of the ImageSet that the event belongs to
Event depth_acquisition_done = 2; ///< Depth image acquisition is done (e.g. stereo images

→˓captured)
}

message ImageEventsRequest
{

bool depth_acquisition_done_enabled = 1; ///< send event when depth acquisition is done
}

service ImageEventsInterface
{

// A server-to-client streaming RPC.
rpc StreamImageEvents(ImageEventsRequest) returns (stream ImageEvents) {}

}

7.7.1.1 Image stream conversions

The disparity image contains 16 bit unsigned integer values. These values must be multiplied by the
scale value given in the DisparityImage message to get the disparity values 𝑑 in pixels. To compute the
3D object coordinates from the disparity values, the baseline and the focal length as well as the principal
point are required. These parameters are transmitted as baseline = 𝑡 in the DisparityImage message,
and focal_length = 𝑓 , principal_point_u = 𝑐𝑥 and principal_point_v = 𝑐𝑦 in the ImageData mes-
sage. The focal length and principal point depend on the resolution of the camera image and need
to be scaled to the resolution of the disparity image. Knowing these values, the pixel coordinates and
the disparities can be transformed into 3D object coordinates in the camera coordinate frame using the
equations described in Computing depth images and point clouds (Section 5.2.2).

Note: The rc_visard NG’s camera coordinate frame is defined as shown in sensor coordinate
frame (Section 3.7).

Assuming that 𝑑16𝑖𝑘 is the 16 bit disparity value at column 𝑖 and row 𝑘 of a disparity image, the float
disparity in pixels 𝑑𝑖𝑘 is given by

𝑑𝑖𝑘 = 𝑑16𝑖𝑘 · scale

Roboception GmbH
Manual: rc_visard_ng

365 Rev: 26.01.3
Status: Jan 30, 2026

7.8. Time synchronization

The 3D reconstruction in meters can be written as:

𝑃𝑥 = (𝑖+ 0.5− 𝑐𝑥)
𝑡

𝑑𝑖𝑘
,

𝑃𝑦 = (𝑘 + 0.5− 𝑐𝑦)
𝑡

𝑑𝑖𝑘
,

𝑃𝑧 = 𝑓
𝑡

𝑑𝑖𝑘
.

The confidence image contains 8 bit unsigned integer values. These values have to be divided by 255
to get the confidence as value between 0 an 1.

The error image contains 8 bit unsigned integer values. The error 𝑒𝑖𝑘 must be multiplied by the scale
value given in the DisparityImage message to get the disparity-error values 𝑑𝑒𝑝𝑠 in pixels. According
to the description in Confidence and error images (Section 5.2.3), the depth error 𝑧𝑒𝑝𝑠 in meters can be
computed as

𝑑𝑖𝑘 = 𝑑16𝑖𝑘 · scale,

𝑧𝑒𝑝𝑠 =
𝑒𝑖𝑘 · scale · 𝑓 · 𝑡

(𝑑𝑖𝑘)2
.

For more information about disparity, error, and confidence images, please refer to sect-stereo-
matching (Section ??).

7.7.2 Example client

A simple example C++ client can be found at https://github.com/roboception/grpc_image_client_
example.

7.8 Time synchronization

The rc_visard NG provides timestamps with all images and messages. To compare these with the time
on the application host, the time needs to be properly synchronized.

This can be done either via the Network Time Protocol (NTP), which is the default, or the
Precision Time Protocol (PTP).

The current system time as well as time synchronization status can be queried via REST-API (Section
7.2) and seen on the Web GUI’s (Section 7.1) System page.

Note: Depending on the reachability of NTP servers or PTP masters it might take up to several
minutes until the time is synchronized.

7.8.1 NTP

The Network Time Protocol (NTP) is a TCP/IP protocol for synchronizing time over a network. A client
periodically requests the current time from a server, and uses it to set and correct its own clock.

By default the rc_visard NG tries to reach NTP servers from the NTP Pool Project, which will work if the
rc_visard NG has access to the internet.

If the rc_visard NG is configured for DHCP (Section 4.4.2) (which is the default setting), it will also
request NTP servers from the DHCP server and try to use those.

Additionally, the user can specify up to three NTP servers manually using the REST-API’s /system/ntp
endpoint. A more convenient way is setting the NTP servers on the Web GUI’s (Section 7.1) System
Time page.

Roboception GmbH
Manual: rc_visard_ng

366 Rev: 26.01.3
Status: Jan 30, 2026

https://github.com/roboception/grpc_image_client_example
https://github.com/roboception/grpc_image_client_example

7.8. Time synchronization

7.8.2 PTP

The Precision Time Protocol (PTP, also known as IEEE1588) is a protocol which offers more precise
and robust clock synchronization than with NTP.

The rc_visard can be configured to act as a PTP slave via the standard GigE Vision 2.0/GenICam
interface (Section 7.6) using the GevIEEE1588 parameter.

At least one PTP master providing time has to be running in the network. On Linux the respective com-
mand for starting a PTP master on ethernet port eth0 is, e.g., sudo ptpd --masteronly --foreground
-i eth0.

While the rc_visard is synchronized with a PTP master (rc_visard in PTP status SLAVE), the NTP
synchronization is paused.

7.8.3 Setting time manually

The rc_visard NG allows to set the current date and time manually using the REST-API’s /system/time
endpoint, if no time synchronization is active (see System and logs, Section 7.2.2.3). A more convenient
way is setting the system time on the Web GUI’s (Section 7.1) System Time page.

Roboception GmbH
Manual: rc_visard_ng

367 Rev: 26.01.3
Status: Jan 30, 2026

8 UserSpace

The UserSpace enables users to deploy and manage containers running on the rc_visard NG. Stan-
dalone containers and docker-compose stacks are supported.

Note: Familiarity with Docker containers is required.

If available and enabled, the UserSpace can be accessed in the Web GUI (Section 7.1) in the menu
under UserSpace. This page shows the running apps and containers with their current state and health,
in case a health-check is available. Each container lists the published ports. If their protocol is http or
https, these containers can be accessed directly in the Web GUI.

8.1 Configuration

If the UserSpace is enabled for the first time, a user for the portainer UI needs to be created: In the
Web GUI (Section 7.1) navigate to UserSpace and click on Manage UserSpace Apps. Then, register a
user account for the administrator. It is required to complete this step within five minutes after booting
the rc_visard NG.

Note: The UserSpace is not enabled by default and can for security reasons only be en-
abled/disabled or reset via the Web GUI by placing the Roboception UserSpace Key QR code in
front of the camera, for security reasons.

8.1.1 Configure UserSpace via the Web GUI

To configure the UserSpace via the Web GUI (Section 7.1), navigate to UserSpace and click on Config-
ure UserSpace.

Print the Roboception UserSpace Key from here or https://roboception.com/
roboception-userspace-key/ and place it in front of the camera so that it is completely visible in
both, left and right camera images.

Use the buttons to enable/disable or reset the UserSpace. Resetting will delete all containers, volumes,
and the portainer configuration, including secrets and users, and cannot be undone.

8.2 Configure HTTP proxy

If your organization uses a proxy server to connect to the internet, you need to configure this proxy
server for Docker and portainer in order to pull container images stored in container registries like Docker
Hub and pull git repositories in portainer. These proxy settings apply only to Docker and portainer itself,
not to the apps running in containers.

Usually this also means that you need to trust the CA certificate of the proxy server in order to use
HTTPS connections.

Roboception GmbH
Manual: rc_visard_ng

368 Rev: 26.01.3
Status: Jan 30, 2026

https://roboception.com/roboception-userspace-key/
https://roboception.com/roboception-userspace-key/

8.3. View running applications

Both can be configured via Web GUI (Section 7.1) under UserSpace and then Configure UserSpace.

8.3 View running applications

UserSpace information including running apps and their published ports can be queried via REST-
API userspace endpoint , (Section 7.2.2.2) or viewed in the Web GUI (Section 7.1) in the menu under
UserSpace.

Container labels org.opencontainers.image.XXX can be used to provide additional information to the
API which is also shown in the Web GUI, see REST-API UserSpaceContainer definition, (Section 7.2.3).

8.4 Network access to UserSpace applications

To access containers via network, the container ports need to be published to host ports.

If a container provides a web interface via http or https, use container labels to show a button in the
Web GUI to open that directly:

• com.roboception.app.http: all exposed TCP ports use http

• com.roboception.app.https.port=1234,5678: comma separated list with https ports

8.5 Interfaces

Docker containers managed in the UserSpace can use the public interfaces of the rc_visard NG. In
particular, Docker containers can access synchronized image sets via gRPC (Section 7.7) and can call
the REST-API interface (Section 7.2). The rc_visard NG (the host) can be accessed under the Docker
bridge IP (in default Docker bridge network 172.17.0.1).

8.6 Restrictions

Some restrictions for containers apply:

• Containers cannot be privileged.

• No access to the host network (a Docker bridge network is used instead).

• Only paths inside cloned git repositories with a docker-compose stack can be mounted, all other
host paths cannot be mounted.

• Host devices cannot be accessed. This includes e.g. USB and GPU devices.

• Well known and internally used ports on the host cannot be bound. This includes ports below
1024, ports from 4200 to 4299 and the ports 2342, 2343, 2344, 2345, 3956, 4840, 5353, 6379,
7000, 7001, 7002, 7003, 7100, 9100, 9118, 9256, 9445, 9446, 11311, 22350, 22352, 50010,
50051, 50052, 50053 and 50054.

Roboception GmbH
Manual: rc_visard_ng

369 Rev: 26.01.3
Status: Jan 30, 2026

9 Maintenance

Warning: The customer does not need to open the rc_visard NG’s housing to perform maintenance.
Unauthorized opening will void the warranty.

9.1 Lens cleaning

Glass lenses with antireflective coating are used to reduce glare. Please take special care when clean-
ing the lenses. To clean them, use a soft lens-cleaning brush to remove dust or dirt particles. Then
use a clean microfiber cloth that is designed to clean lenses, and gently wipe the lens using a circular
motion to avoid scratches that may compromise the sensor’s performance. For stubborn dirt, high purity
isopropanol or a lens cleaning solution formulated for coated lenses (such as the Uvex Clear family of
products) may be used.

9.2 Camera calibration

The cameras are calibrated during production. Under normal operating conditions, the calibration will
be valid for the life time of the sensor. High impact, such as occurring when dropping the rc_visard NG,
can change the camera’s parameters slightly. In this case, calibration can be verified and recalibration
undertaken via the Web GUI (see Camera calibration, Section 6.3.3).

9.3 Creating and restoring backups of settings

The rc_visard NG offers the possibility to download the current settings as backup or for transferring
them to a different rc_visard or rc_cube.

The current settings of the rc_visard NG can be downloaded on the Web GUI’s (Section 7.1) System
page in the rc_visard NG Settings section. They can also be downloaded via the rc_visard NG’s REST-
API interface (Section 7.2) using the GET /system/backup request.

For downloading a backup, the user can choose which settings to include:

• nodes: the settings of all modules (parameters, preferred orientations and sorting strategies)

• load_carriers: the configured load carriers

• regions_of_interest: the configured 2D and 3D regions of interest

• grippers: the configured grippers (without the CAD elements)

The returned backup should be stored as a .json file.

The templates of the SilhouetteMatch and CADMatch modules are not included in the backup but can
be downloaded manually using the REST-API or the Web GUI (see Template API, Section 6.2.6.14 and
Template API, Section 6.2.7.13).

Roboception GmbH
Manual: rc_visard_ng

370 Rev: 26.01.3
Status: Jan 30, 2026

9.4. Updating the software license

A backup can be restored to the rc_visard NG on the Web GUI’s (Section 7.1) System page in the
rc_visard NG Settings section by uploading the backup .json file. In the Web GUI the settings included
in the backup are shown and can be chosen for restore. The corresponding REST-API interface (Section
7.2) call is POST /system/backup.

Warning: When restoring load carriers, all existing load carriers on the rc_visard NG will get lost
and will be replaced by the content of the backup. The same applies to restoring grippers and
regions of interest.

When restoring a backup, only the settings which are applicable to the rc_visard NG are restored.
Parameters for modules that do not exist on the device or do not have a valid license will be skipped. If
a backup can only be restored partially, the user will be notified by warnings.

9.4 Updating the software license

Licenses that are purchased from Roboception for enabling additional features can be installed via the
Web GUI’s (Section 7.1) System → Firmware & License page. The rc_visard NG has to be rebooted to
apply the licenses.

9.5 Downloading log files

During operation, the rc_visard NG logs important information, warnings, and errors into files. If the
rc_visard NG exhibits unexpected or erroneous behavior, the log files can be used to trace its origin.
Log messages can be viewed and filtered using the Web GUI’s (Section 7.1) System → Logs page. If
contacting the support (Contact , Section 12), the log files are very useful for tracking possible problems.
To download them as a .tar.gz file, click on Download all logs on the Web GUI’s System → Logs page.

Aside from the Web GUI, the logs are also accessible via the rc_visard NG’s REST-API inter-
face (Section 7.2) using the GET /logs and GET /logs/{log} requests.

9.6 Updating the firmware

Information about the current firmware image version can be found on the Web GUI’s (Section 7.1)
System → Firmware & License page. It can also be accessed via the rc_visard NG’s REST-API inter-
face (Section 7.2) using the GET /system request. Users can use either the Web GUI or the REST-API
to update the firmware.

Warning: When upgrading from a version prior to 21.07, all of the software modules’ configured
parameters will be reset to their defaults after a firmware update. Only when upgrading from version
21.07 or higher, the last saved parameters will be preserved. Please make sure these settings are
persisted on the application-side or client PC (e.g., using the REST-API interface, Section 7.2) to
request all parameters and store them prior to executing the update.

The following settings are excluded from this and will be persisted across a firmware update:

• the rc_visard NG’s network configuration including an optional static IP address and the user-
specified device name,

• the latest result of the Hand-eye calibration (Section 6.3.1), i.e., recalibrating the rc_visard NG
w.r.t. a robot is not required, unless camera mounting has changed, and

• the latest result of the Camera calibration (Section 6.3.3), i.e., recalibration of the rc_visard ’s
stereo cameras is not required.

Roboception GmbH
Manual: rc_visard_ng

371 Rev: 26.01.3
Status: Jan 30, 2026

9.6. Updating the firmware

Step 1: Download the newest firmware version. Firmware updates will be supplied from of a
Mender artifact file identified by its .mender suffix.

If a new firmware update is available for your rc_visard NG device, the respective file can be
downloaded to a local computer from https://www.roboception.com/download.

Warning: Make sure the firmware version to upload is still within the software maintenance
period of your rc_visard NG. You can see the firmware version constraints on the rc_visard
NG’s Web GUI on the System → Firmware & License page. If the latest firmware version
exceeds the software maintenance period, a new license must be purchased to use a newer
firmware.

Step 2: Upload the update file. To update with the rc_visard NG’s REST-API, users may refer to the
POST /system/update request.

To update the firmware via the Web GUI, locate the System → Firmware & License page and press
the “Upload rc_visard NG Update” button. Select the desired update image file (file extension .
mender) from the local file system and open it to start the update.

Depending on the network architecture and configuration, the upload may take several minutes.
During the update via the Web GUI, a progress bar indicates the progress of the upload.

Note: Depending on the web browser, the update progress status shown in the progress bar
may indicate the completion of the update too early. Please wait until a notification window
opens, which indicates the end of the update process. Expect an overall update time of at least
five minutes.

Warning: Do not close the web browser tab which contains the Web GUI or press the renew
button on this tab, because it will abort the update procedure. In that case, repeat the update
procedure from the beginning.

Step 3: Reboot the rc_visard NG. To apply a firmware update to the rc_visard NG device, a reboot is
required after having uploaded the new image version.

Note: The new image version is uploaded to the inactive partition of the rc_visard NG. Only
after rebooting will the inactive partition be activated, and the active partition will become in-
active. If the updated firmware image cannot be loaded, this partition of the rc_visard NG
remains inactive and the previously installed firmware version from the active partition will be
used automatically.

As for the REST-API, the reboot can be performed by the PUT /system/reboot request.

After having uploaded the new firmware via the Web GUI, a notification window is opened, which
offers to reboot the device immediately or to postpone the reboot. To reboot the rc_visard NG at
a later time, use the Reboot button on the Web GUI’s System page.

Step 4: Confirm the firmware update. After rebooting the rc_visard NG, please check the firmware
image version number of the currently active image to make sure that the updated image was
successfully loaded. You can do so either via the Web GUI’s System → Firmware & License page
or via the REST-API’s GET /system/update request.

Please contact Roboception in case the firmware update could not be applied successfully.

Roboception GmbH
Manual: rc_visard_ng

372 Rev: 26.01.3
Status: Jan 30, 2026

https://www.roboception.com/download

9.7. Restoring the previous firmware version

9.7 Restoring the previous firmware version

After a successful firmware update, the previous firmware image is stored on the inactive partition of
the rc_visard NG and can be restored in case needed. This procedure is called a rollback.

Note: Using the latest firmware as provided by Roboception is strongly recommended. Hence, roll-
back functionality should only be used in case of serious issues with the updated firmware version.

Rollback functionality is only accessible via the rc_visard NG’s REST-API interface (Section 7.2) using
the PUT /system/rollback request. It can be issued using any HTTP-compatible client or using a web
browser as described in Swagger UI (Section 7.2.4). Like the update process, the rollback requires a
subsequent device reboot to activate the restored firmware version.

9.8 Rebooting the rc_visard NG

An rc_visard NG reboot is necessary after updating the firmware or performing a software rollback. It
can be issued either programmatically, via the rc_visard NG’s REST-API interface (Section 7.2) using
the PUT /system/reboot request, or manually on the Web GUI’s (Section 7.1) System page.

The reboot is finished when the LED turns green again.

Roboception GmbH
Manual: rc_visard_ng

373 Rev: 26.01.3
Status: Jan 30, 2026

10 Accessories

10.1 Connectivity kit

Roboception offers an optional connectivity kit to aid customers with setting up the rc_visard NG. For
permanent installation, the customer is responsible for providing a suitable power supply. The connec-
tivity kit consists of a:

• network cable with straight M12 plug to straight RJ45 connector in either 2 m, 5 m, or 10 m length,

• power adapter cable with straight M12 socket to DC barrel connector in 30 cm length,

• 24 V, 30 W wall power supply, or a 24 V, 60 W desktop power supply.

Connecting the rc_visard NG to residential or office grid power requires a power supply that meets EN
55011 Class B emission standards. The E2CFS 30W 24V by EGSTON System Electronics Eggenburg
GmbH (http://www.egston.com) contained in the connectivity kit is certified accordingly. However, it
does not meet immunity standards for industrial environments under EN 61000-6-2.

Power supply
24V 1.25A

M12 to RJ45 cable

DC barrel to
M12 adapter

Fig. 10.1: The optional connectivity kit’s components

10.2 Wiring

Cables are by default not provided with the rc_visard NG. It is the customer’s responsibility to obtain
appropriate parts. The following sections provide an overview of suggested components.

10.2.1 Ethernet connections

The rc_visard NG provides an industrial 8-pin A-coded M12 socket connector for Ethernet connectivity.
Various cabling solutions can be obtained directly from third party vendors.

CAT5 (1 Gbps) M12 plug to RJ45

Roboception GmbH
Manual: rc_visard_ng

374 Rev: 26.01.3
Status: Jan 30, 2026

http://www.egston.com

10.3. Spare parts

• Straight M12 plug to straight RJ45 connector, 10 m length: Phoenix Contact NBC-MS/ 10,0-
94B/R4AC SCO, Art.-Nr.: 1407417

• Straight M12 plug to straight RJ45 connector, 10 m length: MURR Electronics Art.-Nr.: 7700-
48521-S4W1000

• Angled M12 plug to straight RJ45 connector, 10 m length: MURR Electronics Art.-Nr.: 7700-
48551-S4W1000

10.2.2 Power connections

An 8-pin A-coded M12 plug connector is provided for power and GPIO connectivity. Various cabling
solutions can be obtained from third party vendors. A selection of M12 to open ended cables is provided
below. Customers are required to provide power and GPIO connections to the cables according to the
pinouts described in Wiring (Section 3.5). The rc_visard NG’s housing must be connected to ground.

Sensor/Actor cable M12 socket to open end

• Straight M12 socket connector to open end, shielded, 10m length: Phoenix Contact SAC-8P-10,0-
PUR/M12FS SH, Art.Nr.: 1522891

• Angled M12 socket connector to open end, shielded 10m length: Phoenix Contact SAC-8P-10,0-
PUR/M12FR SH, Art.Nr.: 1522943

Sensor/Actor M12 socket for field termination

• Phoenix Contact SACC-M12FS-8CON-PG9-M, Art.Nr.:1513347

• TE Connectivity T4110011081-000 (metal housing)

• TE Connectivity T4110001081-000 (plastic housing)

10.2.3 Power supplies

The rc_visard NG is classified as an EN-55011 Class B device and immune to light industrial and
industrial environments. For connecting the sensor to residential grid power, a power supply under EN
55011/55022 Class B has to be used.

It is the customer’s responsibility to obtain and install a suitable power supply satisfying EN 61000-6-2
for permanent installation in industrial environments. One example that satisfies both EN 61000-6-2 and
EN 55011/55022 Class B is the DIN-Rail mounted PULS MiniLine ML60.241 24V/DC 2.5 A by PULS
GmbH (http://www.pulspower.com). A certified electrician must perform installation.

Only one rc_visard NG shall be connected to a power supply at any time, and the total length of cables
must be less than 30 m.

10.3 Spare parts

No user-serviceable spare parts are currently available for rc_visard NG devices.

Roboception GmbH
Manual: rc_visard_ng

375 Rev: 26.01.3
Status: Jan 30, 2026

http://www.pulspower.com

11 Troubleshooting

11.1 LED colors

During the boot process, the LED will change color several times to indicate stages in the boot process:

Table 11.1: LED color codes
LED color Boot stage
white power supply OK
blue normal boot process in progress
green boot complete, rc_visard NG ready

The LED will signal some warning or error states to support the user during troubleshooting.

Table 11.2: LED color trouble codes
LED color Warning or error state
off no power to the sensor
brief red flash every 5 seconds no network connectivity
red Some process has terminated and failed to restart.
yellow high-temperature warning (case has exceeded 60 °C)

11.2 Hardware issues

LED does not illuminate

The rc_visard NG does not start up.

• Ensure that cables are connected and secured properly.

• Ensure that adequate DC voltage (18 V to 30 V) with correct polarity is applied to the power
connector at the pins labeled as Power and Ground as described in the device’s pin assignment
specification (Section 3.5). Connecting the sensor to voltage outside of the specified range, to
alternating current, with reversed polarity, or to a supply with voltage spikes will lead to permanent
hardware damage.

LED turns yellow while the sensor appears to function normally

This may indicate a high housing temperature. The sensor might be mounted in a position that obstructs
free airflow around the cooling fins.

• Clean cooling fins and housing.

• Ensure a minimum of 10 cm free space in all directions around cooling fins to provide adequate
convective cooling.

• Ensure that ambient temperature is within specified range.

Roboception GmbH
Manual: rc_visard_ng

376 Rev: 26.01.3
Status: Jan 30, 2026

11.3. Connectivity issues

The sensor may slow down processing when cooling is insufficient or the ambient temperature exceeds
the specified range.

Reliability issues and/or mechanical damage

This may be an indication of ambient conditions (vibration, shock, resonance, and temperature) being
outside of specified range. Please refer to the specification of environmental conditions (Section 3.3).

• Operating the rc_visard NG outside of specified ambient conditions might lead to damage and will
void the warranty.

Electrical shock when touching the sensor

This indicates an electrical fault in sensor, cabling, or power supply or adjacent system.

• Immediately turn off power to the system, disconnect cables, and have a qualified electrician check
the setup.

• Ensure that the sensor housing is properly grounded; check for large ground loops.

11.3 Connectivity issues

LED briefly flashes red every 5 seconds

If the LED briefly flashes red every 5 seconds, then the rc_visard NG is not able to detect a network
link.

• Check that the network cable is properly connected to the rc_visard NG and the network.

• If no problem is visible, then replace the Ethernet cable.

A GigE Vision client or rcdiscover-gui cannot detect the camera

• Check whether the rc_visard NG’s LED flashes briefly every 5 seconds (check the cable if it does).

• Ensure that the rc_visard NG is connected to the same subnet (the discovery mechanism uses
broadcasts that will not work across different subnets).

The Web GUI is inaccessible

• Ensure that the rc_visard NG is turned on and connected to the same subnet as the host computer.

• Check whether the rc_visard NG’s LED flashes briefly every 5 seconds (check the cable if it does).

• Check whether rcdiscover-gui detects the sensor. If it reports the rc_visard NG as unreachable,
then the rc_visard NG’s network configuration (Section 4.4) is wrong.

• If the rc_visard NG is reported as reachable, try double clicking the entry to open the Web GUI in
a browser.

• If this does not work, try entering the rc_visard NG’s reported IP address directly in the browser
as target address.

Too many Web GUIs are open at the same time

The Web GUI consumes the rc_visard NG’s processing resources to compress images to be transmitted
and for statistical output that is regularly polled by the browser. Leaving several instances of the Web
GUI open on the same or different computers can significantly diminish the rc_visard NG’s performance.
The Web GUI is meant for configuration and validation, not to permanently monitor the rc_visard NG.

11.4 Camera-image issues

The camera image is too bright

• If the camera is in manual exposure mode, decrease the exposure time, or

Roboception GmbH
Manual: rc_visard_ng

377 Rev: 26.01.3
Status: Jan 30, 2026

11.5. Depth/Disparity, error, and confidence image issues

• switch to auto-exposure mode.

The camera image is too dark

• If the camera is in manual exposure mode, increase the exposure time, or

• switch to auto-exposure mode.

The camera image is too noisy

Large gain factors cause high-amplitude image noise. To decrease the image noise,

• use an additional light source to increase the scene’s light intensity, or

• choose a greater maximal auto-exposure time.

The camera image is out of focus

• Check whether the object is too close to the lens and increase the distance between the object
and the lens if it is.

• Check whether the camera lenses are dirty and clean them if they are.

• If none of the above applies, a severe hardware problem might exist. Please contact sup-
port (Section 12).

The camera image is blurred

Fast motions in combination with long exposure times can cause blur. To reduce motion blur,

• decrease the motion speed of the camera,

• decrease the motion speed of objects in the field of view of the camera, or

• decrease the exposure time of the camera.

The camera image is fuzzy

• Check whether the lenses are dirty and clean them if so (see Lens cleaning, Section 9.1).

• If none of the above applies, a severe hardware problem might exist. Please contact sup-
port (Section 12).

The camera image frame rate is too low

• Increase the image frame rate.

• The maximal frame rate of the cameras is 25 Hz.

11.5 Depth/Disparity, error, and confidence image issues

All these guidelines also apply to error and confidence images, because they correspond directly to the
disparity image.

The disparity image is too sparse or empty

• Check whether the camera images are well exposed and sharp. Follow the instructions in Camera-
image issues (Section 11.4) if applicable.

• Check whether the scene has enough texture and install an external pattern projector if required.

• Decrease the Minimum Distance (Section ??).

• Increase the Maximum Distance (Section ??).

• Check whether the object is too close to the cameras. Consider the different depth ranges of the
camera variants.

• Decrease the Minimum Confidence (Section ??).

• Increase the Maximum Depth Error (Section ??).

Roboception GmbH
Manual: rc_visard_ng

378 Rev: 26.01.3
Status: Jan 30, 2026

11.6. GigE Vision/GenICam issues

• Choose a lesser Disparity Image Quality (Section ??). Lower resolution disparity images are
generally less sparse.

• Check the cameras’ calibration and recalibrate if required (see Camera calibration, Section 6.3.3).

The disparity images’ frame rate is too low

• Check and increase the frame rate of the camera images. The frame rate of the disparity image
cannot be greater than the frame rate of the camera images.

• Choose a lesser Disparity Image Quality (Section ??).

• Increase the Minimum Distance (Section ??) as much as possible for the application.

The disparity image does not show close objects

• Check whether the object is too close to the cameras. Consider the depth ranges of the camera
variants.

• Decrease the Minimum Distance (Section ??).

The disparity image does not show distant objects

• Increase the Maximum Distance (Section ??).

• Increase the Maximum Depth Error (Section ??).

• Decrease the Minimum Confidence (Section ??).

The disparity image is too noisy

• Increase the Segmentation value (Section ??).

• Increase the Fill-In value (Section ??).

The disparity values or the resulting depth values are too inaccurate

• Decrease the distance between the camera and the scene. Depth-measurement error grows
quadratically with the distance from the cameras.

• Check whether the scene contains repetitive patterns and remove them if it does. They could
cause wrong disparity measurements.

The disparity image is too smooth

• Decrease the Fill-In value (Section ??).

The disparity image does not show small structures

• Decrease the Segmentation value (Section ??).

• Decrease the Fill-In value (Section ??).

11.6 GigE Vision/GenICam issues

No images

• Check that the modules are enabled. See ComponentSelector and ComponentEnable in Important
GenICam parameters (Section 7.6.2).

Roboception GmbH
Manual: rc_visard_ng

379 Rev: 26.01.3
Status: Jan 30, 2026

12 Contact

12.1 Support

For support issues, please see http://www.roboception.com/support or contact sup-
port@roboception.de.

12.2 Downloads

Software SDKs, etc. can be downloaded from http://www.roboception.com/download.

12.3 Address

Roboception GmbH
Kaflerstrasse 2
81241 Munich
Germany

Web: http://www.roboception.com
Email: info@roboception.de
Phone: +49 89 889 50 79-0

Roboception GmbH
Manual: rc_visard_ng

380 Rev: 26.01.3
Status: Jan 30, 2026

http://www.roboception.com/support
mailto:support@roboception.de
mailto:support@roboception.de
http://www.roboception.com/download
http://www.roboception.com
mailto:info@roboception.de

13 Appendix

13.1 Pose formats

A pose consists of a translation and rotation. The translation defines the shift along the 𝑥, 𝑦 and 𝑧
axes. The rotation can be defined in many different ways. The rc_visard NG uses quaternions to define
rotations and translations are given in meters. This is called the XYZ+quaternion format. This chapter
explains the conversion between different common conventions and the XYZ+quaternion format.

It is quite common to define rotations in 3D by three angles that define rotations around the three
coordinate axes. Unfortunately, there are many different ways to do that. The most common conventions
are Euler and Cardan angles (also called Tait-Bryan angles). In both conventions, the rotations can be
applied to the previously rotated axis (intrinsic rotation) or to the axis of a fixed coordinate system
(extrinsic rotation).

We use 𝑥, 𝑦 and 𝑧 to denote the three coordinate axes. 𝑥′, 𝑦′ and 𝑧′ refer to the axes that have been
rotated one time. Similarly, 𝑥′′, 𝑦′′ and 𝑧′′ are the axes after two rotations.

In the (original) Euler angle convention, the first and the third axis are always the same. The rotation
order 𝑧-𝑥′-𝑧′′ means rotating around the 𝑧-axis, then around the already rotated 𝑥-axis and finally around
the (two times) rotated 𝑧-axis. In the Cardan angle convention, three different rotation axes are used,
e.g. 𝑧-𝑦′-𝑥′′. Cardan angles are often also just called Euler angles.

For each intrinsic rotation order, there is an equivalent extrinsic rotation order, which is inverted, e.g.
the intrinsic rotation order 𝑧-𝑦′-𝑥′′ is equivalent to the extrinsic rotation order 𝑥-𝑦-𝑧.

Rotations around the 𝑥, 𝑦 and 𝑧 axes can be defined by quaternions as

𝑟𝑥(𝛼) =

⎛⎜⎜⎝
sin 𝛼

2
0
0

cos 𝛼
2

⎞⎟⎟⎠ , 𝑟𝑦(𝛽) =

⎛⎜⎜⎝
0

sin 𝛽
2

0

cos 𝛽
2

⎞⎟⎟⎠ , 𝑟𝑧(𝛾) =

⎛⎜⎜⎝
0
0

sin 𝛾
2

cos 𝛾
2

⎞⎟⎟⎠ ,

or by rotation matrices as

𝑟𝑥(𝛼) =

⎛⎝ 1 0 0
0 cos𝛼 − sin𝛼
0 sin𝛼 cos𝛼

⎞⎠ ,

𝑟𝑦(𝛽) =

⎛⎝ cos𝛽 0 sin𝛽
0 1 0

− sin𝛽 0 cos𝛽

⎞⎠ ,

𝑟𝑧(𝛾) =

⎛⎝ cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0
0 0 1

⎞⎠ .

The extrinsic rotation order 𝑥-𝑦-𝑧 can be computed by multiplying the individual rotations in inverse
order, i.e. 𝑟𝑧(𝛾)𝑟𝑦(𝛽)𝑟𝑥(𝛼).

Based on these definitions, the following sections explain the conversion between common conventions
and the XYZ+quaternion format.

Roboception GmbH
Manual: rc_visard_ng

381 Rev: 26.01.3
Status: Jan 30, 2026

13.1. Pose formats

Note: Please be aware of units for positions and orientations. rc_visard NG devices always specify
positions in meters, while most robot manufacturers use millimeters or inches. Angles are typically
specified in degrees, but may sometimes also be given in radians.

13.1.1 Rotation matrix and translation vector

A pose can also be defined by a rotation matrix 𝑅 and a translation vector 𝑇 .

𝑅 =

⎛⎝ 𝑟00 𝑟01 𝑟02
𝑟10 𝑟11 𝑟12
𝑟20 𝑟21 𝑟22

⎞⎠ , 𝑇 =

⎛⎝ 𝑋
𝑌
𝑍

⎞⎠ .

The pose transformation can be applied to a point 𝑃 by

𝑃 ′ = 𝑅𝑃 + 𝑇.

13.1.1.1 Conversion from rotation matrix to quaternion

The conversion from a rotation matrix (with 𝑑𝑒𝑡(𝑅) = 1) to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be
done as follows.

𝑥 = sign(𝑟21 − 𝑟12)
1

2

√︀
max(0, 1 + 𝑟00 − 𝑟11 − 𝑟22)

𝑦 = sign(𝑟02 − 𝑟20)
1

2

√︀
max(0, 1− 𝑟00 + 𝑟11 − 𝑟22)

𝑧 = sign(𝑟10 − 𝑟01)
1

2

√︀
max(0, 1− 𝑟00 − 𝑟11 + 𝑟22)

𝑤 =
1

2

√︀
max(0, 1 + 𝑟00 + 𝑟11 + 𝑟22)

The sign operator returns -1 if the argument is negative. Otherwise, 1 is returned. It is used to recover
the sign for the square root. The max function ensures that the argument of the square root function is
not negative, which can happen in practice due to round-off errors.

13.1.1.2 Conversion from quaternion to rotation matrix

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to a rotation matrix can be done as
follows.

𝑅 = 2

⎛⎝ 1
2 − 𝑦2 − 𝑧2 𝑥𝑦 − 𝑧𝑤 𝑥𝑧 + 𝑦𝑤
𝑥𝑦 + 𝑧𝑤 1

2 − 𝑥2 − 𝑧2 𝑦𝑧 − 𝑥𝑤
𝑥𝑧 − 𝑦𝑤 𝑦𝑧 + 𝑥𝑤 1

2 − 𝑥2 − 𝑦2

⎞⎠

13.1.2 ABB pose format

ABB robots use a position 𝑋, 𝑌 , 𝑍 and a quaternion 𝑄1, 𝑄2, 𝑄3, 𝑄4 for describing a pose, similar to
rc_visard NG devices. However, the position must be given in millimeters and the quaternion order is
as follows:

𝑞 = (𝑥 𝑦 𝑧 𝑤) = (𝑄2 𝑄3 𝑄4 𝑄1).

13.1.3 FANUC XYZ-WPR format

The pose format that is used by FANUC robots consists of a position 𝑋𝑌 𝑍 in millimeters and an orien-
tation 𝑊𝑃𝑅 that is given by three angles in degrees, with 𝑊 rotating around 𝑥-axis, 𝑃 rotating around

Roboception GmbH
Manual: rc_visard_ng

382 Rev: 26.01.3
Status: Jan 30, 2026

13.1. Pose formats

𝑦-axis and 𝑅 rotating around 𝑧-axis. The rotation order is 𝑥-𝑦-𝑧 and computed by 𝑟𝑧(𝑅)𝑟𝑦(𝑃)𝑟𝑥(𝑊).

13.1.3.1 Conversion from FANUC-WPR to quaternion

The conversion from the 𝑊𝑃𝑅 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be done by
first converting all angles to radians

𝑊𝑟 = 𝑊
𝜋

180
,

𝑃𝑟 = 𝑃
𝜋

180
,

𝑅𝑟 = 𝑅
𝜋

180
,

and then calculating the quaternion with

𝑥 = cos (𝑅𝑟/2) cos (𝑃𝑟/2) sin (𝑊𝑟/2)− sin (𝑅𝑟/2) sin (𝑃𝑟/2) cos (𝑊𝑟/2),
𝑦 = cos (𝑅𝑟/2) sin (𝑃𝑟/2) cos (𝑊𝑟/2) + sin (𝑅𝑟/2) cos (𝑃𝑟/2) sin (𝑊𝑟/2),
𝑧 = sin (𝑅𝑟/2) cos (𝑃𝑟/2) cos (𝑊𝑟/2)− cos (𝑅𝑟/2) sin (𝑃𝑟/2) sin (𝑊𝑟/2),
𝑤 = cos (𝑅𝑟/2) cos (𝑃𝑟/2) cos (𝑊𝑟/2) + sin (𝑅𝑟/2) sin (𝑃𝑟/2) sin (𝑊𝑟/2).

13.1.3.2 Conversion from quaternion to FANUC-WPR

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to the 𝑊𝑃𝑅 angles in degrees can
be done as follows.

𝑅 = atan2(2(𝑤𝑧 + 𝑥𝑦), 1− 2(𝑦2 + 𝑧2))
180

𝜋

𝑃 = asin(2(𝑤𝑦 − 𝑧𝑥))
180

𝜋

𝑊 = atan2(2(𝑤𝑥+ 𝑦𝑧), 1− 2(𝑥2 + 𝑦2))
180

𝜋

13.1.4 Franka Emika Pose Format

Franka Emika robots use a transformation matrix 𝑇 to define a pose. A transformation matrix combines
a rotation matrix 𝑅 and a translation vector 𝑡 = (𝑥 𝑦 𝑧)𝑇 .

𝑇 =

⎛⎜⎜⎝
𝑟00 𝑟01 𝑟02 𝑥
𝑟10 𝑟11 𝑟12 𝑦
𝑟20 𝑟21 𝑟22 𝑧
0 0 0 1

⎞⎟⎟⎠
The pose given by Franka Emika’s “Measure Pose” App consists of a translation 𝑥, 𝑦, 𝑧 in millimeters
and a rotation 𝑥, 𝑦, 𝑧 in degrees. The rotation convention is 𝑧-𝑦′-𝑥′′ (i.e. 𝑥-𝑦-𝑧) and is computed by
𝑟𝑧(𝑧)𝑟𝑦(𝑦)𝑟𝑥(𝑥).

Roboception GmbH
Manual: rc_visard_ng

383 Rev: 26.01.3
Status: Jan 30, 2026

13.1. Pose formats

13.1.4.1 Conversion from transformation matrix to quaternion

The conversion from a rotation matrix (with 𝑑𝑒𝑡(𝑅) = 1) to a quaternion 𝑞 = (𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤) can be
done as follows:

𝑞𝑥 = sign(𝑟21 − 𝑟12)
1

2

√︀
max(0, 1 + 𝑟00 − 𝑟11 − 𝑟22)

𝑞𝑦 = sign(𝑟02 − 𝑟20)
1

2

√︀
max(0, 1− 𝑟00 + 𝑟11 − 𝑟22)

𝑞𝑧 = sign(𝑟10 − 𝑟01)
1

2

√︀
max(0, 1− 𝑟00 − 𝑟11 + 𝑟22)

𝑞𝑤 =
1

2

√︀
max(0, 1 + 𝑟00 + 𝑟11 + 𝑟22)

The sign operator returns -1 if the argument is negative. Otherwise, 1 is returned. It is used to recover
the sign for the square root. The max function ensures that the argument of the square root function is
not negative, which can happen in practice due to round-off errors.

13.1.4.2 Conversion from Rotation-XYZ to quaternion

The conversion from the 𝑥, 𝑦, 𝑧 angles in degrees to a quaternion 𝑞 = (𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤) can be done
by first converting all angles to radians

𝑋𝑟 = 𝑥
𝜋

180
,

𝑌𝑟 = 𝑦
𝜋

180
,

𝑍𝑟 = 𝑧
𝜋

180
,

and then calculating the quaternion with

𝑞𝑥 = cos (𝑍𝑟/2) cos (𝑌𝑟/2) sin (𝑋𝑟/2)− sin (𝑍𝑟/2) sin (𝑌𝑟/2) cos (𝑋𝑟/2),
𝑞𝑦 = cos (𝑍𝑟/2) sin (𝑌𝑟/2) cos (𝑋𝑟/2) + sin (𝑍𝑟/2) cos (𝑌𝑟/2) sin (𝑋𝑟/2),
𝑞𝑧 = sin (𝑍𝑟/2) cos (𝑌𝑟/2) cos (𝑋𝑟/2)− cos (𝑍𝑟/2) sin (𝑌𝑟/2) sin (𝑋𝑟/2),
𝑞𝑤 = cos (𝑍𝑟/2) cos (𝑌𝑟/2) cos (𝑋𝑟/2) + sin (𝑍𝑟/2) sin (𝑌𝑟/2) sin (𝑋𝑟/2).

13.1.4.3 Conversion from quaternion and translation to transformation

The conversion from a quaternion 𝑞 = (𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤) and a translation vector 𝑡 = (𝑥 𝑦 𝑧)𝑇 to
a transformation matrix 𝑇 can be done as follows:

𝑇 =

⎛⎜⎜⎝
1− 2𝑠(𝑞2𝑦 + 𝑞2𝑧) 2𝑠(𝑞𝑥𝑞𝑦 − 𝑞𝑧𝑞𝑤) 2𝑠(𝑞𝑥𝑞𝑧 + 𝑞𝑦𝑞𝑤) 𝑥
2𝑠(𝑞𝑥𝑞𝑦 + 𝑞𝑧𝑞𝑤) 1− 2𝑠(𝑞2𝑥 + 𝑞2𝑧) 2𝑠(𝑞𝑦𝑞𝑧 − 𝑞𝑥𝑞𝑤) 𝑦
2𝑠(𝑞𝑥𝑞𝑧 − 𝑞𝑦𝑞𝑤) 2𝑠(𝑞𝑦𝑞𝑧 + 𝑞𝑥𝑞𝑤) 1− 2𝑠(𝑞2𝑥 + 𝑞2𝑦) 𝑧

0 0 0 1

⎞⎟⎟⎠
where 𝑠 = ||𝑞||−2 = 1

𝑞2𝑥+𝑞2𝑦+𝑞2𝑧+𝑞2𝑤
and 𝑠 = 1 if 𝑞 is a unit quaternion.

Roboception GmbH
Manual: rc_visard_ng

384 Rev: 26.01.3
Status: Jan 30, 2026

13.1. Pose formats

13.1.4.4 Conversion from quaternion to Rotation-XYZ

The conversion from a quaternion 𝑞 = (𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤) with ||𝑞|| = 1 to the 𝑥, 𝑦, 𝑧 angles in degrees
can be done as follows.

𝑥 = atan2(2(𝑞𝑤𝑞𝑧 + 𝑞𝑥𝑞𝑦), 1− 2(𝑞2𝑦 + 𝑞2𝑧))
180

𝜋

𝑦 = asin(2(𝑞𝑤𝑞𝑦 − 𝑞𝑧𝑞𝑥))
180

𝜋

𝑧 = atan2(2(𝑞𝑤𝑞𝑥 + 𝑞𝑦𝑞𝑧), 1− 2(𝑞2𝑥 + 𝑞2𝑦))
180

𝜋

13.1.4.5 Pose representation in RaceCom messages and state machines

In RaceCom messages and in state machines a pose is usually defined as one-dimensional array of
16 float values, representing the transformation matrix in column-major order. The indices of the matrix
entries below correspond to the array indices

𝑇 =

⎛⎜⎜⎝
𝑎0 𝑎4 𝑎8 𝑎12
𝑎1 𝑎5 𝑎9 𝑎13
𝑎2 𝑎6 𝑎10 𝑎14
𝑎3 𝑎7 𝑎11 𝑎15

⎞⎟⎟⎠

13.1.5 Fruitcore HORST pose format

Fruitcore HORST robots use a position in meters and a quaternion with 𝑞0 = 𝑤, 𝑞1 = 𝑥, 𝑞2 = 𝑦 and
𝑞3 = 𝑧 for describing a pose, like rc_visard NG devices. There is no conversion needed.

13.1.6 Kawasaki XYZ-OAT format

The pose format that is used by Kawasaki robots consists of a position 𝑋𝑌 𝑍 in millimeters and an
orientation 𝑂𝐴𝑇 that is given by three angles in degrees, with 𝑂 rotating around 𝑧 axis, 𝐴 rotating
around the rotated 𝑦 axis and 𝑇 rotating around the rotated 𝑧 axis. The rotation convention is 𝑧-𝑦′-𝑧′′

(i.e. 𝑧-𝑦-𝑧) and computed by 𝑟𝑧(𝑂)𝑟𝑦(𝐴)𝑟𝑧(𝑇).

13.1.6.1 Conversion from Kawasaki-OAT to quaternion

The conversion from the 𝑂𝐴𝑇 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be done by
first converting all angles to radians

𝑂𝑟 = 𝑂
𝜋

180
,

𝐴𝑟 = 𝐴
𝜋

180
,

𝑇𝑟 = 𝑇
𝜋

180
,

and then calculating the quaternion with

𝑥 = cos (𝑂𝑟/2) sin (𝐴𝑟/2) sin (𝑇𝑟/2)− sin (𝑂𝑟/2) sin (𝐴𝑟/2) cos (𝑇𝑟/2),
𝑦 = cos (𝑂𝑟/2) sin (𝐴𝑟/2) cos (𝑇𝑟/2) + sin (𝑂𝑟/2) sin (𝐴𝑟/2) sin (𝑇𝑟/2),
𝑧 = sin (𝑂𝑟/2) cos (𝐴𝑟/2) cos (𝑇𝑟/2) + cos (𝑂𝑟/2) cos (𝐴𝑟/2) sin (𝑇𝑟/2),
𝑤 = cos (𝑂𝑟/2) cos (𝐴𝑟/2) cos (𝑇𝑟/2)− sin (𝑂𝑟/2) cos (𝐴𝑟/2) sin (𝑇𝑟/2).

Roboception GmbH
Manual: rc_visard_ng

385 Rev: 26.01.3
Status: Jan 30, 2026

13.1. Pose formats

13.1.6.2 Conversion from quaternion to Kawasaki-OAT

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to the 𝑂𝐴𝑇 angles in degrees can
be done as follows.

If 𝑥 = 0 and 𝑦 = 0 the conversion is

𝑂 = atan2(2(𝑧 − 𝑤), 2(𝑧 + 𝑤))
180

𝜋

𝐴 = acos(𝑤2 + 𝑧2)
180

𝜋

𝑇 = atan2(2(𝑧 + 𝑤), 2(𝑤 − 𝑧))
180

𝜋

If 𝑧 = 0 and 𝑤 = 0 the conversion is

𝑂 = atan2(2(𝑦 − 𝑥), 2(𝑥+ 𝑦))
180

𝜋

𝐴 = acos(−1.0)
180

𝜋

𝑇 = atan2(2(𝑦 + 𝑥), 2(𝑦 − 𝑥))
180

𝜋

In all other cases the conversion is

𝑂 = atan2(2(𝑦𝑧 − 𝑤𝑥), 2(𝑥𝑧 + 𝑤𝑦))
180

𝜋

𝐴 = acos(𝑤2 − 𝑥2 − 𝑦2 + 𝑧2)
180

𝜋

𝑇 = atan2(2(𝑦𝑧 + 𝑤𝑥), 2(𝑤𝑦 − 𝑥𝑧))
180

𝜋

13.1.7 KUKA XYZ-ABC format

KUKA robots use the so called XYZ-ABC format. 𝑋𝑌 𝑍 is the position in millimeters. 𝐴𝐵𝐶 are angles
in degrees, with 𝐴 rotating around 𝑧 axis, 𝐵 rotating around 𝑦 axis and 𝐶 rotating around 𝑥 axis. The
rotation convention is 𝑧-𝑦′-𝑥′′ (i.e. 𝑥-𝑦-𝑧) and computed by 𝑟𝑧(𝐴)𝑟𝑦(𝐵)𝑟𝑥(𝐶).

13.1.7.1 Conversion from KUKA-ABC to quaternion

The conversion from the 𝐴𝐵𝐶 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be done by
first converting all angles to radians

𝐴𝑟 = 𝐴
𝜋

180
,

𝐵𝑟 = 𝐵
𝜋

180
,

𝐶𝑟 = 𝐶
𝜋

180
,

and then calculating the quaternion with

𝑥 = cos (𝐴𝑟/2) cos (𝐵𝑟/2) sin (𝐶𝑟/2)− sin (𝐴𝑟/2) sin (𝐵𝑟/2) cos (𝐶𝑟/2),
𝑦 = cos (𝐴𝑟/2) sin (𝐵𝑟/2) cos (𝐶𝑟/2) + sin (𝐴𝑟/2) cos (𝐵𝑟/2) sin (𝐶𝑟/2),
𝑧 = sin (𝐴𝑟/2) cos (𝐵𝑟/2) cos (𝐶𝑟/2)− cos (𝐴𝑟/2) sin (𝐵𝑟/2) sin (𝐶𝑟/2),
𝑤 = cos (𝐴𝑟/2) cos (𝐵𝑟/2) cos (𝐶𝑟/2) + sin (𝐴𝑟/2) sin (𝐵𝑟/2) sin (𝐶𝑟/2).

Roboception GmbH
Manual: rc_visard_ng

386 Rev: 26.01.3
Status: Jan 30, 2026

13.1. Pose formats

13.1.7.2 Conversion from quaternion to KUKA-ABC

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to the 𝐴𝐵𝐶 angles in degrees can
be done as follows.

𝐴 = atan2(2(𝑤𝑧 + 𝑥𝑦), 1− 2(𝑦2 + 𝑧2))
180

𝜋

𝐵 = asin(2(𝑤𝑦 − 𝑧𝑥))
180

𝜋

𝐶 = atan2(2(𝑤𝑥+ 𝑦𝑧), 1− 2(𝑥2 + 𝑦2))
180

𝜋

13.1.8 Mitsubishi XYZ-ABC format

The pose format that is used by Mitsubishi robots is the same as that for KUKA robots (see KUKA
XYZ-ABC format , Section 13.1.7), except that 𝐴 is a rotation around 𝑥 axis and 𝐶 is a rotation around
𝑧 axis. Thus, the rotation is computed by 𝑟𝑧(𝐶)𝑟𝑦(𝐵)𝑟𝑥(𝐴).

13.1.8.1 Conversion from Mitsubishi-ABC to quaternion

The conversion from the 𝐴𝐵𝐶 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be done by
first converting all angles to radians

𝐴𝑟 = 𝐴
𝜋

180
,

𝐵𝑟 = 𝐵
𝜋

180
,

𝐶𝑟 = 𝐶
𝜋

180
,

and then calculating the quaternion with

𝑥 = cos (𝐶𝑟/2) cos (𝐵𝑟/2) sin (𝐴𝑟/2)− sin (𝐶𝑟/2) sin (𝐵𝑟/2) cos (𝐴𝑟/2),
𝑦 = cos (𝐶𝑟/2) sin (𝐵𝑟/2) cos (𝐴𝑟/2) + sin (𝐶𝑟/2) cos (𝐵𝑟/2) sin (𝐴𝑟/2),
𝑧 = sin (𝐶𝑟/2) cos (𝐵𝑟/2) cos (𝐴𝑟/2)− cos (𝐶𝑟/2) sin (𝐵𝑟/2) sin (𝐴𝑟/2),
𝑤 = cos (𝐶𝑟/2) cos (𝐵𝑟/2) cos (𝐴𝑟/2) + sin (𝐶𝑟/2) sin (𝐵𝑟/2) sin (𝐴𝑟/2).

13.1.8.2 Conversion from quaternion to Mitsubishi-ABC

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to the 𝐴𝐵𝐶 angles in degrees can
be done as follows.

𝐴 = atan2(2(𝑤𝑥+ 𝑦𝑧), 1− 2(𝑥2 + 𝑦2))
180

𝜋

𝐵 = asin(2(𝑤𝑦 − 𝑧𝑥))
180

𝜋

𝐶 = atan2(2(𝑤𝑧 + 𝑥𝑦), 1− 2(𝑦2 + 𝑧2))
180

𝜋

13.1.9 Universal Robots pose format

The pose format that is used by Universal Robots consists of a position 𝑋𝑌 𝑍 in millimeters and an
orientation in angle-axis format 𝑉 = (𝑅𝑋 𝑅𝑌 𝑅𝑍)𝑇 . The rotation angle 𝜃 in radians is the length

Roboception GmbH
Manual: rc_visard_ng

387 Rev: 26.01.3
Status: Jan 30, 2026

13.1. Pose formats

of the rotation axis 𝑈 .

𝑉 =

⎛⎝ 𝑅𝑋
𝑅𝑌
𝑅𝑍

⎞⎠ =

⎛⎝ 𝜃𝑢𝑥

𝜃𝑢𝑦

𝜃𝑢𝑧

⎞⎠
𝑉 is called a rotation vector.

13.1.9.1 Conversion from angle-axis format to quaternion

The conversion from a rotation vector 𝑉 to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be done as follows.

We first recover the angle 𝜃 in radians from the rotation vector 𝑉 by

𝜃 =
√︀
𝑅𝑋2 +𝑅𝑌 2 +𝑅𝑍2.

If 𝜃 = 0, then the quaternion is 𝑞 = (0 0 0 1), otherwise it is

𝑥 = 𝑅𝑋
sin(𝜃/2)

𝜃
,

𝑦 = 𝑅𝑌
sin(𝜃/2)

𝜃
,

𝑧 = 𝑅𝑍
sin(𝜃/2)

𝜃
,

𝑤 = cos(𝜃/2).

13.1.9.2 Conversion from quaternion to angle-axis format

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to a rotation vector in angle-axis
form can be done as follows.

We first recover the angle 𝜃 in radians from the quaternion by

𝜃 = 2 · acos(𝑤).

If 𝜃 = 0, then the rotation vector is 𝑉 = (0 0 0)𝑇 , otherwise it is

𝑅𝑋 = 𝜃
𝑥√

1− 𝑤2
,

𝑅𝑌 = 𝜃
𝑦√

1− 𝑤2
,

𝑅𝑍 = 𝜃
𝑧√

1− 𝑤2
.

13.1.10 Yaskawa Pose Format

The pose format that is used by Yaskawa robots consists of a position 𝑋𝑌 𝑍 in millimeters and an
orientation that is given by three angles in degrees, with 𝑅𝑥 rotating around 𝑥-axis, 𝑅𝑦 rotating around
𝑦-axis and 𝑅𝑧 rotating around 𝑧-axis. The rotation order is 𝑥-𝑦-𝑧 and computed by 𝑟𝑧(𝑅𝑧)𝑟𝑦(𝑅𝑦)𝑟𝑥(𝑅𝑥).

Roboception GmbH
Manual: rc_visard_ng

388 Rev: 26.01.3
Status: Jan 30, 2026

13.1. Pose formats

13.1.10.1 Conversion from Yaskawa Rx, Ry, Rz to quaternion

The conversion from the 𝑅𝑥,𝑅𝑦,𝑅𝑧 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be
done by first converting all angles to radians

𝑋𝑟 = 𝑅𝑥
𝜋

180
,

𝑌𝑟 = 𝑅𝑦
𝜋

180
,

𝑍𝑟 = 𝑅𝑧
𝜋

180
,

and then calculating the quaternion with

𝑥 = cos (𝑍𝑟/2) cos (𝑌𝑟/2) sin (𝑋𝑟/2)− sin (𝑍𝑟/2) sin (𝑌𝑟/2) cos (𝑋𝑟/2),
𝑦 = cos (𝑍𝑟/2) sin (𝑌𝑟/2) cos (𝑋𝑟/2) + sin (𝑍𝑟/2) cos (𝑌𝑟/2) sin (𝑋𝑟/2),
𝑧 = sin (𝑍𝑟/2) cos (𝑌𝑟/2) cos (𝑋𝑟/2)− cos (𝑍𝑟/2) sin (𝑌𝑟/2) sin (𝑋𝑟/2),
𝑤 = cos (𝑍𝑟/2) cos (𝑌𝑟/2) cos (𝑋𝑟/2) + sin (𝑍𝑟/2) sin (𝑌𝑟/2) sin (𝑋𝑟/2).

13.1.10.2 Conversion from quaternion to Yaskawa Rx, Ry, Rz

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to the 𝑅𝑥,𝑅𝑦,𝑅𝑧 angles in degrees
can be done as follows.

𝑅𝑥 = atan2(2(𝑤𝑥+ 𝑦𝑧), 1− 2(𝑥2 + 𝑦2))
180

𝜋

𝑅𝑦 = asin(2(𝑤𝑦 − 𝑧𝑥))
180

𝜋

𝑅𝑧 = atan2(2(𝑤𝑧 + 𝑥𝑦), 1− 2(𝑦2 + 𝑧2))
180

𝜋

Roboception GmbH
Manual: rc_visard_ng

389 Rev: 26.01.3
Status: Jan 30, 2026

HTTP Routing Table

HTTP Routing Table

/cad
GET /cad/gripper_elements, 268
GET /cad/gripper_elements/{id}, 269
PUT /cad/gripper_elements/{id}, 269
DELETE /cad/gripper_elements/{id}, 270

/generic_robot_interface
GET /generic_robot_interface/hec_configs,

340
GET /generic_robot_interface/hec_configs/{pipeline},

341
GET /generic_robot_interface/jobs, 342
GET /generic_robot_interface/jobs/{job_id},

343
PUT /generic_robot_interface/hec_configs/{pipeline},

341
PUT /generic_robot_interface/jobs/{job_id},

343
DELETE /generic_robot_interface/hec_configs/{pipeline},

342
DELETE /generic_robot_interface/jobs/{job_id},

344

/logs
GET /logs, 295
GET /logs/{log}, 295

/nodes
GET /nodes, 279
GET /nodes/{node}, 280
GET /nodes/{node}/services, 280
GET /nodes/{node}/services/{service}, 281
GET /nodes/{node}/status, 282
PUT /nodes/{node}/services/{service}, 281

/pipelines
GET /pipelines/{pipeline}/nodes, 283
GET /pipelines/{pipeline}/nodes/{node}, 284
GET /pipelines/{pipeline}/nodes/{node}/parameters,

285
GET /pipelines/{pipeline}/nodes/{node}/parameters/{param},

287
GET /pipelines/{pipeline}/nodes/{node}/services,

288
GET /pipelines/{pipeline}/nodes/{node}/services/{service},

289
GET /pipelines/{pipeline}/nodes/{node}/status,

291

PUT /pipelines/{pipeline}/nodes/{node}/parameters,
286

PUT /pipelines/{pipeline}/nodes/{node}/parameters/{param},
288

PUT /pipelines/{pipeline}/nodes/{node}/services/{service},
290

/system
GET /system, 297
GET /system/backup, 298
GET /system/ca_certificates, 299
GET /system/ca_certificates/{id}, 299
GET /system/dns, 300
GET /system/license, 301
GET /system/max_power_test, 302
GET /system/network, 303
GET /system/network/settings, 303
GET /system/ntp, 305
GET /system/rollback, 306
GET /system/time, 307
GET /system/ui_lock, 308
GET /system/update, 309
POST /system/backup, 298
POST /system/license, 302
POST /system/max_power_test, 302
POST /system/ui_lock, 309
POST /system/update, 310
PUT /system/ca_certificates/{id}, 299
PUT /system/dns, 300
PUT /system/network/settings, 304
PUT /system/ntp, 305
PUT /system/reboot, 306
PUT /system/rollback, 307
PUT /system/time, 307
DELETE /system/ca_certificates/{id}, 300
DELETE /system/ui_lock, 308

/templates
GET /templates/rc_boxpick, 124
GET /templates/rc_boxpick/{id}, 125
GET /templates/rc_cadmatch, 201
GET /templates/rc_cadmatch/{id}, 202
GET /templates/rc_silhouettematch, 164
GET /templates/rc_silhouettematch/{id}, 165
PUT /templates/rc_boxpick/{id}, 125
PUT /templates/rc_cadmatch/{id}, 202
PUT /templates/rc_silhouettematch/{id}, 165
DELETE /templates/rc_boxpick/{id}, 126

Roboception GmbH
Manual: rc_visard_ng

390 Rev: 26.01.3
Status: Jan 30, 2026

HTTP Routing Table

DELETE /templates/rc_cadmatch/{id}, 203
DELETE /templates/rc_silhouettematch/{id},

166

/userspace
GET /userspace, 292
GET /userspace/proxy, 294
PUT /userspace/configure, 293
PUT /userspace/proxy, 294

Roboception GmbH
Manual: rc_visard_ng

391 Rev: 26.01.3
Status: Jan 30, 2026

Index

Index

Symbols
3D coordinates, 30

disparity image, 30
3D modeling, 30
3D object detection, 167

A
acquisition mode

camera, 35
AcquisitionAlternateFilter

GenICam, 357
AcquisitionFrameRate

GenICam, 354
AcquisitionMultiPartMode

GenICam, 358
active partition, 372
AdaptiveOut1

auto exposure mode, 37
AprilTag, 62

pose estimation, 65
re-identification, 66
return codes, 73
services, 68

auto
exposure, 37

auto exposure, 37, 38
auto exposure mode, 37

AdaptiveOut1, 37
Normal, 37
Out1High, 37

B
backup

settings, 370
BalanceRatio

GenICam, 355
BalanceRatioSelector

GenICam, 355
BalanceWhiteAuto

GenICam, 355
base-plane

SilhouetteMatch, 128
base-plane calibration

SilhouetteMatch, 128
Baseline

GenICam, 359
baseline, 32
Baumer

IpConfigTool, 27
bin picking, 74, 95, 167
BoxPick, 95

filling level, 48
grasp, 97
grasp sorting, 97
item models, 96
load carrier, 47, 245
parameters, 101
preferred orientation, 99
RECTANGLE, 96
region of interest, 253
return codes, 124
services, 107
status, 107
template api, 124
template deletion, 124
template download, 124
template upload, 124
texture, 96
TEXTURED_BOX, 96
views, 96

C
cables, 18, 374
CAD model, 16
CADMatch, 167

collision check, 171
filling level, 48
grasp points, 167
load carrier, 47, 245
object detection, 169
object template, 167–169
parameters, 172
pose priors, 168
preferred orientation, 168
region of interest, 253
return codes, 200
services, 177
sorting, 169
status, 176
template api, 201
template deletion, 201
template download, 201
template upload, 201

calibration
camera, 235
hand-eye calibration, 208

Roboception GmbH
Manual: rc_visard_ng

392 Rev: 26.01.3
Status: Jan 30, 2026

Index

rectification, 32
calibration grid, 236
camera

acquisition mode, 35
calibration, 235
frame rate, 36
gamma, 37
parameters, 33, 35
trigger activation, 36
trigger source, 36
Web GUI, 33

camera calibration
monocalibration, 240
parameters, 241
services, 241
stereo calibration, 238

camera model, 32
Chunk data

GenICam, 357
collision check, 226, 260
CollisionCheck, 226

return codes, 235
compartment

load carrier, 248
ComponentEnable

GenICam, 353
ComponentIDValue

GenICam, 353
components

rc_visard, 14
ComponentSelector

GenICam, 353
Confidence

GenICam image stream, 361
confidence, 30
connectivity kit, 374
container, 368
conversions

GenICam image stream, 361
gRPC image stream, 365

cooling, 17
coordinate frames

mounting, 21

D
data model

REST-API, 310
data-type

REST-API, 310
definition

load carrier, 246
depth image, 29, 30, 30
depth measurement, 43
DepthAcquisitionMode

GenICam, 359
DepthAcquisitionTrigger

GenICam, 359
DepthDoubleShot

GenICam, 359
DepthFill

GenICam, 360
DepthMaxDepth

GenICam, 360
DepthMaxDepthErr

GenICam, 360
DepthMinConf

GenICam, 360
DepthMinDepth

GenICam, 360
DepthQuality

GenICam, 359
DepthSeg

GenICam, 360
DepthSmooth

GenICam, 359
DepthStaticScene

GenICam, 359
detection

load carrier, 48
tag, 61

DHCP, 10
DHCP, 26
dimensions

load carrier, 246
rc_visard, 16

disable parameter lock
GenICam, 357

discovery GUI, 23
Disparity

GenICam image stream, 361
disparity, 28, 29, 32
disparity error, 30
disparity image, 28, 29

3D coordinates, 30
DNS, 10
Docker, 368
DOF, 10
double_shot

GenICam, 359
download

images, 32
log files, 371
settings, 370

E
eki, 345
Error

GenICam image stream, 361
error, 30

hand-eye calibration, 214
Ethernet

pin assignments, 18
exposure

auto, 37
HDR, 37
manual, 37

Roboception GmbH
Manual: rc_visard_ng

393 Rev: 26.01.3
Status: Jan 30, 2026

Index

exposure region, 39
exposure time, 39

maximum, 38
ExposureAuto

GenICam, 354
ExposureRegionHeight

GenICam, 358
ExposureRegionOffsetX

GenICam, 358
ExposureRegionOffsetY

GenICam, 358
ExposureRegionWidth

GenICam, 358
ExposureTime

GenICam, 354
ExposureTimeAutoMax

GenICam, 358
external reference frame

hand-eye calibration, 204

F
fill-in

GenICam, 360
filling level

BoxPick, 48
ItemPick, 48
LoadCarrier, 48
SilhouetteMatch, 48

firmware
mender, 371
rollback, 373
update, 371
version, 371

focal length, 32
focal length factor

GenICam, 359
FocalLengthFactor

GenICam, 359
fps, see frame rate
frame rate, 15

camera, 36
GenICam, 354

G
Gain

GenICam, 355
gain factor, 38, 40
gamma

camera, 37
Generic Robot Interface, 329
GenICam, 10
GenICam

AcquisitionAlternateFilter, 357
AcquisitionFrameRate, 354
AcquisitionMultiPartMode, 358
BalanceRatio, 355
BalanceRatioSelector, 355
BalanceWhiteAuto, 355

Baseline, 359
Chunk data, 357
ComponentEnable, 353
ComponentIDValue, 353
ComponentSelector, 353
DepthAcquisitionMode, 359
DepthAcquisitionTrigger, 359
DepthDoubleShot, 359
DepthFill, 360
DepthMaxDepth, 360
DepthMaxDepthErr, 360
DepthMinConf, 360
DepthMinDepth, 360
DepthQuality, 359
DepthSeg, 360
DepthSmooth, 359
DepthStaticScene, 359
disable parameter lock, 357
double_shot, 359
ExposureAuto, 354
ExposureRegionHeight, 358
ExposureRegionOffsetX, 358
ExposureRegionOffsetY, 358
ExposureRegionWidth, 358
ExposureTime, 354
ExposureTimeAutoMax, 358
fill-in, 360
focal length factor, 359
FocalLengthFactor, 359
frame rate, 354
Gain, 355
Height, 354
HeightMax, 354
LineSelector, 355
LineSource, 355
LineStatus, 355
LineStatusAll, 355
maximum depth error, 360
maximum distance, 360
minimum confidence, 360
minimum distance, 360
PixelFormat, 354, 361
PtpEnable, 356
quality, 359
RcExposureAutoAverageMax, 358
RcExposureAutoAverageMin, 358
Scan3dBaseline, 356
Scan3dCoordinateOffset, 357
Scan3dCoordinateScale, 356
Scan3dDistanceUnit, 356
Scan3dFocalLength, 356
Scan3dInvalidDataFlag, 357
Scan3dInvalidDataValue, 357
Scan3dOutputMode, 356
Scan3dPrinciplePointU, 356
Scan3dPrinciplePointV, 356
segmentation, 360
smooth, 359

Roboception GmbH
Manual: rc_visard_ng

394 Rev: 26.01.3
Status: Jan 30, 2026

Index

static_scene, 359
system ready, 357
timestamp, 361
Width, 354
WidthMax, 354

GenICam image stream
Confidence, 361
conversions, 361
Disparity, 361
Error, 361
Intensity, 361
IntensityCombined, 361

GigE, 10
GigE Vision, 10
GigE Vision, see GenICam

IP address, 27
GPIO

pin assignments, 19
grasp computation, 74, 95, 167
GRI, 329
gripper CAD element api, 268
gripper CAD element deletion, 268
gripper CAD element download, 268
gripper CAD element upload, 268
GripperDB, 260

return codes, 268
gRPC, 362
gRPC image stream

conversions, 365

H
hand-eye calibration

calibration, 208
error, 214
external reference frame, 204
mounting, 204
parameters, 214
robot frame, 204
slot, 211

Height
GenICam, 354

HeightMax
GenICam, 354

host name, 26
housing temperature

LED, 17
humidity, 17

I
image

timestamp, 361
image noise, 38
images

download, 32
inactive partition, 372, 373
inner volume

load carrier, 246
installation, 23

Intensity
GenICam image stream, 361

IntensityCombined
GenICam image stream, 361

IP, 10
IP address, 10
IP address, 25

GigE Vision, 27
IP54, 17
IpConfigTool

Baumer, 27
ItemPick, 74

filling level, 48
grasp, 74
grasp sorting, 74
load carrier, 47, 245
parameters, 77
preferred orientation, 76
region of interest, 253
return codes, 94
services, 82
status, 81

L
LED, 23

colors, 376
housing temperature, 17

LineSelector
GenICam, 355

LineSource
GenICam, 355

LineStatus
GenICam, 355

LineStatusAll
GenICam, 355

Link-Local, 10
Link-Local, 27
load carrier

BoxPick, 47, 245
compartment, 248
definition, 246
detection, 48
dimensions, 246
inner volume, 246
ItemPick, 47, 245
orientation prior, 246
pose, 246
rim, 246
SilhouetteMatch, 47, 245

load carrier detection, 47
load carrier model, 245
LoadCarrier, 47

filling level, 48
parameters, 50
return codes, 61
services, 52

LoadCarrierDB, 245
return codes, 253

Roboception GmbH
Manual: rc_visard_ng

395 Rev: 26.01.3
Status: Jan 30, 2026

Index

services, 250
log files

download, 371
logs

REST-API, 295

M
MAC address, 10
MAC address, 26
manual exposure, 37, 39
maximum

exposure time, 38
maximum depth error

GenICam, 360
maximum distance

GenICam, 360
mDNS, 10
Measure, 43

parameters, 44
return codes, 47
services, 44

mender
firmware, 371

minimum confidence
GenICam, 360

minimum distance
GenICam, 360

monocalibration
camera calibration, 240

motion blur, 38
mounting, 20

hand-eye calibration, 204

N
network cable, 374
network configuration, 25
node

REST-API, 277
Normal

auto exposure mode, 37
NTP, 10
NTP

synchronization, 366

O
object detection, 127, 167
OPC UA, 345
operating conditions, 17
orientation prior

load carrier, 246
Out1High

auto exposure mode, 37

P
parameter

REST-API, 278
parameters

camera, 33, 35

camera calibration, 241
hand-eye calibration, 214
services, 41

pin assignments
Ethernet, 18
GPIO, 19
power, 19

PixelFormat
GenICam, 354, 361

point cloud, 30
portainer, 368
pose

load carrier, 246
pose estimation

AprilTag, 65
QR code, 65

power
pin assignments, 19

power cable, 374, 375
power supply, 17, 375
protection class, 17
PTP

synchronization, 356, 367
PtpEnable

GenICam, 356

Q
QR Code

return codes, 73
QR code, 62

pose estimation, 65
re-identification, 66
services, 68

quality
GenICam, 359

R
rc_visard

components, 14
RcExposureAutoAverageMax

GenICam, 358
RcExposureAutoAverageMin

GenICam, 358
re-identification

AprilTag, 66
QR code, 66

reboot, 373
rectification, 32
reset, 23
resolution, 15
REST-API, 275

data model, 310
data-type, 310
entry point, 275
logs, 295
node, 277
parameter, 278
services, 278

Roboception GmbH
Manual: rc_visard_ng

396 Rev: 26.01.3
Status: Jan 30, 2026

Index

status value, 277
system, 295
UserSpace, 292
version, 275

restore
settings, 370

return codes
AprilTag, 73
BoxPick, 124
CADMatch, 200
CollisionCheck, 235
GripperDB, 268
ItemPick, 94
LoadCarrier, 61
LoadCarrierDB, 253
Measure, 47
QR Code, 73
RoiDB, 260
SilhouetteMatch, 163

rim
load carrier, 246

robot frame
hand-eye calibration, 204

ROI, 253
RoiDB, 253

return codes, 260
services, 255

rollback
firmware, 373

S
Scan3dBaseline

GenICam, 356
Scan3dCoordinateOffset

GenICam, 357
Scan3dCoordinateScale

GenICam, 356
Scan3dDistanceUnit

GenICam, 356
Scan3dFocalLength

GenICam, 356
Scan3dInvalidDataFlag

GenICam, 357
Scan3dInvalidDataValue

GenICam, 357
Scan3dOutputMode

GenICam, 356
Scan3dPrinciplePointU

GenICam, 356
Scan3dPrinciplePointV

GenICam, 356
SDK, 10
segmentation

GenICam, 360
self-calibration, 235
Semi-Global Matching, see SGM
serial number, 24, 26
services

AprilTag, 68
camera calibration, 241
parameters, 41
QR code, 68
REST-API, 278
tag detection, 68

set
time, 367

settings
backup, 370
download, 370
restore, 370
upload, 370

SGM, 10
SGM, 28, 29
silhouette, 127
SilhouetteMatch, 127

base-plane, 128
base-plane calibration, 128
collision check, 135
detection of objects, 132
filling level, 48
grasp points, 129
load carrier, 47, 245
object template, 129
parameters, 136
preferred orientation, 131
region of interest, 129, 253
return codes, 163
services, 142
sorting, 132
status, 141
template api, 164
template deletion, 164
template download, 164
template upload, 164

slot
hand-eye calibration, 211

smooth
GenICam, 359

spare parts, 375
specifications

rc_visard, 15
static_scene

GenICam, 359
status value

REST-API, 277
stereo calibration

camera calibration, 238
stereo camera, 32
stereo matching, 28
Swagger UI, 325
synchronization

NTP, 366
PTP, 356, 367
time, 356, 366

system
REST-API, 295

Roboception GmbH
Manual: rc_visard_ng

397 Rev: 26.01.3
Status: Jan 30, 2026

Index

system ready
GenICam, 357

T
tag detection, 61

families, 62
pose estimation, 65
re-identification, 66
services, 68

TCP, 10
temperature range, 17
texture, 29
time

set, 367
synchronization, 356, 366

timestamp
GenICam, 361
image, 361

trigger activation
camera, 36

trigger source
camera, 36

tripod, 20

U
update

firmware, 371
upload

settings, 370
URI, 10
URL, 10
UserSpace, 368

disable, 368
Docker network, 369
enable, 368
gRPC, 369
installation, 368
reset, 368
REST-API, 292, 369
restrictions, 369
security, 368, 369

V
version

firmware, 371
REST-API, 275

W
Web GUI, 272

backup, 370
camera, 33
logs, 371
update, 371

white balance, 40
Width

GenICam, 354
WidthMax

GenICam, 354

X
XYZ+quaternion, 11
XYZABC, 11

Roboception GmbH
Manual: rc_visard_ng

398 Rev: 26.01.3
Status: Jan 30, 2026

rc_visard NG 3D Stereo Sensor
ASSEMBLY AND OPERATING MANUAL

Roboception GmbH

Kaflerstrasse 2
81241 Munich info@roboception.de
Germany www.roboception.com

Tutorials: https://tutorials.roboception.com
GitHub: https://github.com/roboception
Documentation: https://doc.rc-visard.com

https://doc.rc-viscore.com
https://doc.rc-cube.com
https://doc.rc-randomdot.com

Shop: https://roboception.com/shop

For customer support, contact

+49 89 889 50 790
(09:00-17:00 CET) support@roboception.de

	Introduction
	Overview
	Warranty
	Applicable standards
	Interfaces
	Approvals
	Standards

	Information on disposal
	Glossary

	Safety
	General warnings
	Intended use

	Hardware specification
	Scope of delivery
	Technical specification
	Environmental and operating conditions
	Power-supply specifications
	Wiring
	Mechanical interface
	Coordinate frames

	Installation
	Software license
	Power up
	Discovery of rc_visard NG devices
	Resetting configuration

	Network configuration
	Host name
	Automatic configuration (factory default)
	Manual configuration

	Measurement principles
	Stereo vision
	General information on 3D data
	Computing disparity images
	Computing depth images and point clouds
	Confidence and error images

	Software modules
	Camera module
	Rectification
	Viewing and downloading images
	Parameters, status values and services

	Detection & Measure modules
	Measure
	LoadCarrier
	TagDetect
	ItemPick
	BoxPick
	SilhouetteMatch
	CADMatch

	Configuration modules
	Hand-eye calibration
	CollisionCheck
	Camera calibration
	IO and Projector Control

	Database modules
	LoadCarrierDB
	RoiDB
	GripperDB

	Interfaces
	Web GUI
	Accessing the Web GUI
	Exploring the Web GUI
	Web GUI access control
	Downloading camera images
	Downloading depth images and point clouds

	REST-API interface
	General API structure
	Available resources and requests
	Data type definitions
	Swagger UI

	Generic Robot Interface
	Job definition
	Hand-Eye Calibration
	GRI binary protocol specification
	Integration with a robot
	Job and HEC_config API

	OPC UA interface
	KUKA Ethernet KRL Interface
	Ethernet connection configuration
	Generic XML structure
	Services
	Parameters
	Example applications
	Troubleshooting

	GigE Vision 2.0/GenICam image interface
	GigE Vision ports
	Important GenICam parameters
	Important standard GenICam features
	Custom GenICam features of the rc_visard NG
	Chunk data
	Provided image streams
	Image stream conversions

	gRPC image stream interface
	gRPC service definition
	Example client

	Time synchronization
	NTP
	PTP
	Setting time manually

	UserSpace
	Configuration
	Configure UserSpace via the Web GUI

	Configure HTTP proxy
	View running applications
	Network access to UserSpace applications
	Interfaces
	Restrictions

	Maintenance
	Lens cleaning
	Camera calibration
	Creating and restoring backups of settings
	Updating the software license
	Downloading log files
	Updating the firmware
	Restoring the previous firmware version
	Rebooting the rc_visard NG

	Accessories
	Connectivity kit
	Wiring
	Ethernet connections
	Power connections
	Power supplies

	Spare parts

	Troubleshooting
	LED colors
	Hardware issues
	Connectivity issues
	Camera-image issues
	Depth/Disparity, error, and confidence image issues
	GigE Vision/GenICam issues

	Contact
	Support
	Downloads
	Address

	Appendix
	Pose formats
	Rotation matrix and translation vector
	ABB pose format
	FANUC XYZ-WPR format
	Franka Emika Pose Format
	Fruitcore HORST pose format
	Kawasaki XYZ-OAT format
	KUKA XYZ-ABC format
	Mitsubishi XYZ-ABC format
	Universal Robots pose format
	Yaskawa Pose Format

	HTTP Routing Table
	Index

